अवकल गणित: Difference between revisions
Listen
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
Differential calculus | Differential calculus | ||
अवकल गणित (डिफरेंशियल कैलकुलस) में परिवर्तन की दरों और परिवर्तन की तात्कालिक दरों का अध्ययन कीया जाता है। यह | अवकल गणित (डिफरेंशियल कैलकुलस) में परिवर्तन की दरों और परिवर्तन की तात्कालिक दरों का अध्ययन कीया जाता है। यह विभेदीकरण,व्युत्पन् (डेरिवेटिव) और भिन्नता की अवधारणाओं पर केंद्रित है। | ||
विभेदन में किसी फलन का | विभेदन में किसी फलन का अवकलन ज्ञात करना शामिल है। किसी फलन का व्युत्पन्न उस दर का प्रतिनिधित्व करता है जिस पर किसी दिए गए बिंदु पर फलन बदल रहा है। यह एक विशिष्ट बिंदु पर फलन के ढलान या ढलवाँपन के बारे में जानकारी प्रदान करता है। | ||
चर <math>x </math> के संबंध में एक फलन <math>f(x)</math>के व्युत्पन्न को<math>f'(x),dy/dx</math> या <math>df(x)/dx</math> के रूप में दर्शाया गया है। यह मापता है कि आगत (इनपुट) चर में परिवर्तन के रूप में फलन का मान कैसे बदलता है। ज्यामितीय रूप से, व्युत्पन्न, एक विशेष बिंदु पर फलन के आरेख (ग्राफ़) को स्पर्शरेखा का प्रतिनिधित्व करता है व उसका मान रेखा के ढलान का मान है । | चर <math>x </math> के संबंध में एक फलन <math>f(x)</math>के व्युत्पन्न को<math>f'(x),dy/dx</math> या <math>df(x)/dx</math> के रूप में दर्शाया गया है। यह मापता है कि आगत (इनपुट) चर में परिवर्तन के रूप में फलन का मान कैसे बदलता है। ज्यामितीय रूप से, व्युत्पन्न, एक विशेष बिंदु पर फलन के आरेख (ग्राफ़) को स्पर्शरेखा का प्रतिनिधित्व करता है व उसका मान रेखा के ढलान का मान है । | ||
डेरिवेटिव खोजने की प्रक्रिया में विभिन्न प्रकार के कार्यों के लिए विभेदन नियम, जैसे शक्ति नियम, उत्पाद नियम, भागफल नियम और श्रृंखला नियम लागू करना शामिल है। ये नियम हमें अधिक जटिल कार्यों के व्युत्पन्न को सरल घटकों में तोड़कर खोजने की अनुमति देते हैं। | |||
डिफरेंशियल कैलकुलस के विभिन्न क्षेत्रों में कई अनुप्रयोग हैं, जिनमें भौतिकी, इंजीनियरिंग, अर्थशास्त्र और जीव विज्ञान शामिल हैं। इसका उपयोग गतिशील प्रणालियों का विश्लेषण और मॉडल करने, कार्यों का अनुकूलन करने, परिवर्तन की दरों से जुड़े समीकरणों को हल करने और विशिष्ट बिंदुओं पर कार्यों के व्यवहार को समझने के लिए किया जाता है। | |||
कुल मिलाकर, डिफरेंशियल कैलकुलस समय और स्थान के साथ मात्राओं में परिवर्तन को समझने और इसकी मात्रा निर्धारित करने के लिए एक शक्तिशाली उपकरण प्रदान करता है, जिससे विषयों की एक विस्तृत श्रृंखला में सटीक गणना और भविष्यवाणियां सक्षम होती हैं। | |||
[[Category:सरल रेखा में गति]] | [[Category:सरल रेखा में गति]] | ||
Revision as of 13:04, 18 June 2023
Differential calculus
अवकल गणित (डिफरेंशियल कैलकुलस) में परिवर्तन की दरों और परिवर्तन की तात्कालिक दरों का अध्ययन कीया जाता है। यह विभेदीकरण,व्युत्पन् (डेरिवेटिव) और भिन्नता की अवधारणाओं पर केंद्रित है।
विभेदन में किसी फलन का अवकलन ज्ञात करना शामिल है। किसी फलन का व्युत्पन्न उस दर का प्रतिनिधित्व करता है जिस पर किसी दिए गए बिंदु पर फलन बदल रहा है। यह एक विशिष्ट बिंदु पर फलन के ढलान या ढलवाँपन के बारे में जानकारी प्रदान करता है।
चर के संबंध में एक फलन के व्युत्पन्न को या के रूप में दर्शाया गया है। यह मापता है कि आगत (इनपुट) चर में परिवर्तन के रूप में फलन का मान कैसे बदलता है। ज्यामितीय रूप से, व्युत्पन्न, एक विशेष बिंदु पर फलन के आरेख (ग्राफ़) को स्पर्शरेखा का प्रतिनिधित्व करता है व उसका मान रेखा के ढलान का मान है ।
डेरिवेटिव खोजने की प्रक्रिया में विभिन्न प्रकार के कार्यों के लिए विभेदन नियम, जैसे शक्ति नियम, उत्पाद नियम, भागफल नियम और श्रृंखला नियम लागू करना शामिल है। ये नियम हमें अधिक जटिल कार्यों के व्युत्पन्न को सरल घटकों में तोड़कर खोजने की अनुमति देते हैं।
डिफरेंशियल कैलकुलस के विभिन्न क्षेत्रों में कई अनुप्रयोग हैं, जिनमें भौतिकी, इंजीनियरिंग, अर्थशास्त्र और जीव विज्ञान शामिल हैं। इसका उपयोग गतिशील प्रणालियों का विश्लेषण और मॉडल करने, कार्यों का अनुकूलन करने, परिवर्तन की दरों से जुड़े समीकरणों को हल करने और विशिष्ट बिंदुओं पर कार्यों के व्यवहार को समझने के लिए किया जाता है।
कुल मिलाकर, डिफरेंशियल कैलकुलस समय और स्थान के साथ मात्राओं में परिवर्तन को समझने और इसकी मात्रा निर्धारित करने के लिए एक शक्तिशाली उपकरण प्रदान करता है, जिससे विषयों की एक विस्तृत श्रृंखला में सटीक गणना और भविष्यवाणियां सक्षम होती हैं।