सम्पोषि व्यतिकरण: Difference between revisions
Listen
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
constructive interference | constructive interference | ||
सम्पोषि व्यतिकरण तरंग प्रकाशिकी में एक घटना है जहां दो या दो से अधिक तरंगें मिलकर एक परिणामी तरंग उत्पन्न करती हैं जिसका आयाम किसी भी व्यक्तिगत तरंग के आयाम से अधिक होता है। यह तब होता है जब तरंगों के शिखर (उच्चतम बिंदु) एक-दूसरे के साथ संरेखित होते हैं, जिससे एक विशेष बिंदु पर तरंग की तीव्रता बढ़ जाती है। | |||
== गणितीय प्रतिनिधित्व == | |||
सम्पोषि व्यतिकरण का गणितीय प्रतिनिधित्व सुपरपोजिशन के सिद्धांत पर आधारित है, जो बताता है कि एक बिंदु पर कुल विस्थापन प्रत्येक व्यक्तिगत तरंग के कारण होने वाले विस्थापन का योग है। आइए दो तरंगों पर विचार करें: | |||
तरंग 1: A1sin(kx−ωt + ϕ1) | |||
तरंग 2: A2sin(kx−ωt + ϕ2) | |||
जहाँ: | |||
* A1 और A2 तरंगों के आयाम हैं। | |||
* k तरंग संख्या है (2π/λ के बराबर, जहां λ तरंग दैर्ध्य है)। | |||
* x स्थिति है. | |||
* ω कोणीय आवृत्ति है। | |||
* t समय है। | |||
* ϕ1 और ϕ2 तरंगों के प्रारंभिक चरण हैं। | |||
इन दो तरंगों के कारण किसी भी बिंदु (x,t) पर कुल विस्थापन उनके विस्थापन के योग द्वारा दिया जाता है: | |||
A_totalsin(kx−ωt ϕ_total) | |||
रचनात्मक हस्तक्षेप होने के लिए, दो तरंगों के बीच चरण अंतर ऐसा होना चाहिए कि उनके शिखर पूरी तरह से संरेखित हों, जिसका अर्थ है: | |||
ϕ2−ϕ1=2πn (जहाँ n एक पूर्णांक है) | |||
इस मामले में, परिणामी आयाम Atotal व्यक्तिगत आयामों A1 और A2 का योग है, जो बढ़ी हुई तरंग तीव्रता या चमक के क्षेत्र की ओर ले जाता है। | |||
[[Category:तरंग प्रकाशिकी]][[Category:कक्षा-12]][[Category:भौतिक विज्ञान]] | [[Category:तरंग प्रकाशिकी]][[Category:कक्षा-12]][[Category:भौतिक विज्ञान]] | ||
Revision as of 16:12, 10 September 2023
constructive interference
सम्पोषि व्यतिकरण तरंग प्रकाशिकी में एक घटना है जहां दो या दो से अधिक तरंगें मिलकर एक परिणामी तरंग उत्पन्न करती हैं जिसका आयाम किसी भी व्यक्तिगत तरंग के आयाम से अधिक होता है। यह तब होता है जब तरंगों के शिखर (उच्चतम बिंदु) एक-दूसरे के साथ संरेखित होते हैं, जिससे एक विशेष बिंदु पर तरंग की तीव्रता बढ़ जाती है।
गणितीय प्रतिनिधित्व
सम्पोषि व्यतिकरण का गणितीय प्रतिनिधित्व सुपरपोजिशन के सिद्धांत पर आधारित है, जो बताता है कि एक बिंदु पर कुल विस्थापन प्रत्येक व्यक्तिगत तरंग के कारण होने वाले विस्थापन का योग है। आइए दो तरंगों पर विचार करें:
तरंग 1: A1sin(kx−ωt + ϕ1)
तरंग 2: A2sin(kx−ωt + ϕ2)
जहाँ:
- A1 और A2 तरंगों के आयाम हैं।
- k तरंग संख्या है (2π/λ के बराबर, जहां λ तरंग दैर्ध्य है)।
- x स्थिति है.
- ω कोणीय आवृत्ति है।
- t समय है।
- ϕ1 और ϕ2 तरंगों के प्रारंभिक चरण हैं।
इन दो तरंगों के कारण किसी भी बिंदु (x,t) पर कुल विस्थापन उनके विस्थापन के योग द्वारा दिया जाता है:
A_totalsin(kx−ωt ϕ_total)
रचनात्मक हस्तक्षेप होने के लिए, दो तरंगों के बीच चरण अंतर ऐसा होना चाहिए कि उनके शिखर पूरी तरह से संरेखित हों, जिसका अर्थ है:
ϕ2−ϕ1=2πn (जहाँ n एक पूर्णांक है)
इस मामले में, परिणामी आयाम Atotal व्यक्तिगत आयामों A1 और A2 का योग है, जो बढ़ी हुई तरंग तीव्रता या चमक के क्षेत्र की ओर ले जाता है।