वर्तुल (वृतीय) गति: Difference between revisions

From Vidyalayawiki

Listen

 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
Circular motion
Circular motion


वृत्ताकार गति से तात्पर्य किसी वस्तु की गति से है जो एक निश्चित केंद्र या अक्ष के चारों ओर एक वृत्ताकार पथ का अनुसरण करती है। इस प्रकार की गति आमतौर पर विभिन्न रोजमर्रा की स्थितियों में देखी जाती है, जैसे कि एक कार किसी वक्र के चारों ओर घूम रही है, कोई ग्रह सूर्य की परिक्रमा कर रहा है, या एक घूमता हुआ शीर्ष।
वृत्ताकार गति का तात्पर्य, किसी ऐसी वस्तु की गति से है, जो एक निश्चित केंद्र या अक्ष के चारों ओर एक वृत्ताकार पथ का अनुसरण करती है। प्रायः ,इस प्रकार की गति ,दैनिक जीवन की विभिन्न स्थितियों में देखी जाती है, जैसे कि एक कार किसी वक्र के चारों ओर घूम रही है, कोई ग्रह सूर्य की परिक्रमा कर रहा है, या एक घूमता हुआ शीर्ष।


== महत्वपूर्ण अवधारणाएं ==
== महत्वपूर्ण अवधारणाएं ==


======    अभिकेन्द्रीय बल ======
======    अभिकेन्द्रीय बल ======
वृत्ताकार गति में, वृत्त के केंद्र की ओर सदैव एक बल कार्य करता है। इस बल को अभिकेंद्रीय बल कहा जाता है और यह वस्तु को उसके वृत्ताकार पथ में बनाए रखने के लिए जिम्मेदार होता है।
[[File:Angular-and-tangential-speed.svg|thumb|किसी चक्रिका (डिस्क) पर कोणीय और स्पर्शरेखीय गति]]
वृत्ताकार गति में, वृत्त के केंद्र की ओर सदैव एक बल कार्य करता है। इस बल को अभिकेंद्रीय बल कहा जाता है और यह वस्तु को उसके वृत्ताकार पथ में बनाए रखने के लिए उत्तरदायी होता है।


======    एकसमान वृत्तीय गति ======
======    एकसमान वृत्तीय गति ======
जब कोई वस्तु एक वृत्त के चारों ओर एक समान गति से घूमती है, तो उसे एकसमान वृत्ताकार गति कहा जाता है। इस स्थिति में, वस्तु का वेग हमेशा बदलता रहता है क्योंकि गति की दिशा लगातार बदलती रहती है, लेकिन उसकी गति स्थिर रहती है।
जब कोई वस्तु एक वृत्त के चारों ओर एक समान गति से घूमती है, तो उसे एकसमान वृत्ताकार गति कहा जाता है। इस स्थिति में, वस्तु का वेग निरंतर बदलता रहता है क्योंकि गति की दिशा लगातार बदलती रहती है, लेकिन उसकी गति स्थिर रहती है।


======    कोणीय वेग ======
======    कोणीय वेग ======
कोणीय वेग (<math>\omega</math>) मापता है कि कोई वस्तु वृत्त के चारों ओर कितनी तेजी से घूमती है। इसे प्रति इकाई समय में वस्तु द्वारा निकाले गए कोण (θθ) में परिवर्तन के रूप में परिभाषित किया गया है:
कोणीय वेग (<math>\omega</math>) मापता है कि कोई वस्तु वृत्त के चारों ओर कितनी तेजी से घूमती है। इसे प्रति इकाई समय में वस्तु द्वारा निकाले गए कोण (<math>\theta</math>) में परिवर्तन के रूप में परिभाषित किया गया है:


   <math>\omega = \frac {\Delta \theta}{\Delta t},</math>​
   <math>\omega = \frac {\Delta \theta}{\Delta t},</math>​
Line 20: Line 21:
*        <math>\omega</math> कोणीय वेग है।
*        <math>\omega</math> कोणीय वेग है।
*        <math>\Delta \theta </math> कोण में परिवर्तन है।
*        <math>\Delta \theta </math> कोण में परिवर्तन है।
*        <math>\Delta \theta </math> समय में परिवर्तन है।
*        <math>\Delta t </math> समय में परिवर्तन है।


   अभिकेन्द्रीय त्वरण: वृत्ताकार गति में कोई वस्तु अभिकेन्द्रीय त्वरण (<math>a_c</math>) का भी अनुभव करती है, जो वृत्त के केंद्र की ओर निर्देशित होती है। अभिकेन्द्रीय त्वरण के परिमाण की गणना सूत्र का उपयोग करके की जा सकती है:
=====    अभिकेन्द्रीय त्वरण =====
वृत्ताकार गति में कोई वस्तु अभिकेन्द्रीय त्वरण (<math>a_c</math>) का भी अनुभव करती है, जो वृत्त के केंद्र की ओर निर्देशित होती है। अभिकेन्द्रीय त्वरण के परिमाण की गणना सूत्र का उपयोग करके की जा सकती है:


<math>a_c=\frac {v^2}{r},</math>​
<math>a_c=\frac {v^2}{r},</math>​
Line 33: Line 35:


== रेखांकन ==
== रेखांकन ==
वृत्तीय गति से जुड़े दो मुख्य ग्राफ़ हैं:
वृत्तीय गति से जुड़े दो मुख्य रेखांकन  हैं:


======    स्थिति-समय ग्राफ ======
======    स्थिति-समय ग्राफ ======
समय के साथ एक समान गोलाकार गति में किसी वस्तु की स्थिति को प्लॉट करते समय, ग्राफ एक वृत्त होगा। वृत्त की त्रिज्या वृत्ताकार पथ की त्रिज्या को दर्शाती है, और ग्राफ़ का ढलान वस्तु के वेग को दर्शाता है।
समय के साथ एक समान गोलाकार गति में किसी वस्तु की स्थिति का रेखांकन करते समय, ग्राफ एक वृत्त होगा। वृत्त की त्रिज्या, वृत्ताकार पथ की त्रिज्या को दर्शाती है, और रेखांकन का ढलान वस्तु के वेग को दर्शाता है।


======    वेग-समय ग्राफ ======
======    वेग-समय ग्राफ ======
एकसमान वृत्ताकार गति में वस्तु की गति स्थिर रहती है, लेकिन वेग की दिशा लगातार बदलती रहती है।इसलिए, वेग-समय ग्राफ़ वेग का निरंतर परिमाण दिखाएगा लेकिन दिशा बदलता रहेगा। ग्राफ़ का ढलान कोणीय वेग (ωω) को दर्शाता है।
एकसमान वृत्ताकार गति में वस्तु की गति स्थिर रहती है, लेकिन वेग की दिशा लगातार बदलती रहती है।इसलिए, वेग-समय रेखांकन  वेग का निरंतर परिमाण दिखाएगा लेकिन दिशा बदलता रहेगा। रेखांकन का ढलान कोणीय वेग (<math>\omega </math>) को दर्शाता है।


== सेंट्ररपेटल फ़ोर्स ==
== अभिकेंद्रीय बल (सेंट्ररपेटल फ़ोर्स) ==
किसी वस्तु को गोलाकार गति में रखने के लिए आवश्यक अभिकेन्द्रीय बल (FcFc​) की गणना निम्नलिखित समीकरण का उपयोग करके की जा सकती है:
किसी वस्तु को गोलाकार गति में रखने के लिए आवश्यक अभिकेन्द्रीय बल (<math>F_c</math>) की गणना निम्नलिखित समीकरण का उपयोग करके की जा सकती है:


<math>F_c=\frac{m\cdot v^2}{r} </math>​
<math>F_c=\frac{m\cdot v^2}{r} </math>​
Line 48: Line 50:
जहाँ:
जहाँ:


   <math>F_c</math> अभिकेन्द्रीय बल है।
*    <math>F_c</math> अभिकेन्द्रीय बल है।
 
*    <math>m</math> वस्तु का द्रव्यमान है।
   <math>m</math> वस्तु का द्रव्यमान है।
*    <math>v</math> वस्तु का वेग है।
 
*    <math>r</math> वृत्त की त्रिज्या है।
   <math>v</math> वस्तु का वेग है।
 
   <math>r</math> वृत्त की त्रिज्या है।


== संक्षेप में ==
== संक्षेप में ==
वृत्ताकार गति में एक वस्तु एक वृत्ताकार पथ पर चलती है, एक अभिकेन्द्रीय बल का अनुभव करती है जो उसे उस पथ में बनाए रखती है। वृत्ताकार गति की भौतिकी को समझने के लिए कोणीय वेग, अभिकेन्द्रीय त्वरण की अवधारणाओं और वेग, त्रिज्या और अभिकेन्द्रीय बल के बीच संबंध को समझना महत्वपूर्ण है। स्थिति-समय और वेग-समय के ग्राफ़ गति की कल्पना और विश्लेषण करने में मदद कर सकते हैं।
वृत्ताकार गति में एक वस्तु एक वृत्ताकार पथ पर चलती है, एक अभिकेन्द्रीय बल का अनुभव करती है जो उसे उस पथ में बनाए रखती है। वृत्ताकार गति की भौतिकी को समझने के लिए कोणीय वेग, अभिकेन्द्रीय त्वरण की अवधारणाओं और वेग, त्रिज्या और अभिकेन्द्रीय बल के बीच संबंध को समझना महत्वपूर्ण है। स्थिति-समय और वेग-समय के रेखांकन  गति की कल्पना और विश्लेषण करने में सहायता कर सकते हैं।
[[Category:गति]]
[[Category:गति]]
[[Category:कक्षा-9]]
[[Category:कक्षा-9]]
[[Category:भौतिक विज्ञान]]
[[Category:भौतिक विज्ञान]]

Latest revision as of 11:32, 27 November 2023

Circular motion

वृत्ताकार गति का तात्पर्य, किसी ऐसी वस्तु की गति से है, जो एक निश्चित केंद्र या अक्ष के चारों ओर एक वृत्ताकार पथ का अनुसरण करती है। प्रायः ,इस प्रकार की गति ,दैनिक जीवन की विभिन्न स्थितियों में देखी जाती है, जैसे कि एक कार किसी वक्र के चारों ओर घूम रही है, कोई ग्रह सूर्य की परिक्रमा कर रहा है, या एक घूमता हुआ शीर्ष।

महत्वपूर्ण अवधारणाएं

   अभिकेन्द्रीय बल
किसी चक्रिका (डिस्क) पर कोणीय और स्पर्शरेखीय गति

वृत्ताकार गति में, वृत्त के केंद्र की ओर सदैव एक बल कार्य करता है। इस बल को अभिकेंद्रीय बल कहा जाता है और यह वस्तु को उसके वृत्ताकार पथ में बनाए रखने के लिए उत्तरदायी होता है।

   एकसमान वृत्तीय गति

जब कोई वस्तु एक वृत्त के चारों ओर एक समान गति से घूमती है, तो उसे एकसमान वृत्ताकार गति कहा जाता है। इस स्थिति में, वस्तु का वेग निरंतर बदलता रहता है क्योंकि गति की दिशा लगातार बदलती रहती है, लेकिन उसकी गति स्थिर रहती है।

   कोणीय वेग

कोणीय वेग () मापता है कि कोई वस्तु वृत्त के चारों ओर कितनी तेजी से घूमती है। इसे प्रति इकाई समय में वस्तु द्वारा निकाले गए कोण () में परिवर्तन के रूप में परिभाषित किया गया है:

  

   जहाँ:

  •        कोणीय वेग है।
  •        कोण में परिवर्तन है।
  •        समय में परिवर्तन है।
   अभिकेन्द्रीय त्वरण

वृत्ताकार गति में कोई वस्तु अभिकेन्द्रीय त्वरण () का भी अनुभव करती है, जो वृत्त के केंद्र की ओर निर्देशित होती है। अभिकेन्द्रीय त्वरण के परिमाण की गणना सूत्र का उपयोग करके की जा सकती है:

   जहाँ:

  •        अभिकेन्द्रीय त्वरण है।
  •        वस्तु का वेग है।
  •        वृत्त की त्रिज्या है ।

रेखांकन

वृत्तीय गति से जुड़े दो मुख्य रेखांकन हैं:

   स्थिति-समय ग्राफ

समय के साथ एक समान गोलाकार गति में किसी वस्तु की स्थिति का रेखांकन करते समय, ग्राफ एक वृत्त होगा। वृत्त की त्रिज्या, वृत्ताकार पथ की त्रिज्या को दर्शाती है, और रेखांकन का ढलान वस्तु के वेग को दर्शाता है।

   वेग-समय ग्राफ

एकसमान वृत्ताकार गति में वस्तु की गति स्थिर रहती है, लेकिन वेग की दिशा लगातार बदलती रहती है।इसलिए, वेग-समय रेखांकन वेग का निरंतर परिमाण दिखाएगा लेकिन दिशा बदलता रहेगा। रेखांकन का ढलान कोणीय वेग () को दर्शाता है।

अभिकेंद्रीय बल (सेंट्ररपेटल फ़ोर्स)

किसी वस्तु को गोलाकार गति में रखने के लिए आवश्यक अभिकेन्द्रीय बल () की गणना निम्नलिखित समीकरण का उपयोग करके की जा सकती है:

जहाँ:

  •    अभिकेन्द्रीय बल है।
  •    वस्तु का द्रव्यमान है।
  •    वस्तु का वेग है।
  •    वृत्त की त्रिज्या है।

संक्षेप में

वृत्ताकार गति में एक वस्तु एक वृत्ताकार पथ पर चलती है, एक अभिकेन्द्रीय बल का अनुभव करती है जो उसे उस पथ में बनाए रखती है। वृत्ताकार गति की भौतिकी को समझने के लिए कोणीय वेग, अभिकेन्द्रीय त्वरण की अवधारणाओं और वेग, त्रिज्या और अभिकेन्द्रीय बल के बीच संबंध को समझना महत्वपूर्ण है। स्थिति-समय और वेग-समय के रेखांकन गति की कल्पना और विश्लेषण करने में सहायता कर सकते हैं।