द्वि-आधारी संक्रियाएँ: Difference between revisions
No edit summary |
(page updated) |
||
| (11 intermediate revisions by 2 users not shown) | |||
| Line 1: | Line 1: | ||
== भूमिका == | |||
[[Category: | गणित में, द्वि-आधारी संक्रिया एक नियम है जो दो अवयवों (जिन्हें ऑपरेंड कहा जाता है) को जोड़कर एक अन्य अवयव उत्पन्न करता है। द्वि-आधारी संक्रिया कई गणितीय संरचनाओं, जैसे समूह, वलय(रिंग) और क्षेत्र(फ़ील्ड) के मूलभूत निर्माण खंड हैं। वे अभिकलित्र(कंप्यूटर) विज्ञान और भौतिकी सहित विभिन्न अनुप्रयोगों में भी आवश्यक हैं। | ||
[[Category: | |||
== परिभाषा == | |||
समुच्चय <math>A</math> पर एक द्वि-आधारी संक्रिया <math>A \times A</math> से <math>A</math> तक एक फलन(फ़ंक्शन) है। दूसरे शब्दों में, <math>A</math> में किसी भी अवयव <math>a</math> और <math>b</math> के लिए, द्वि-आधारी संक्रिया <math>\star </math> , <math>A</math> में भी, निर्गम(आउटपुट) <math>c= a \ \star \ b </math> को परिभाषित करता है। | |||
=== द्वि-आधारी संक्रियाओं के उदाहरण === | |||
गणित में द्विआधारी संक्रियाओं के अनेक उदाहरण हैं: | |||
# '''जोड़''': जोड़ संक्रिया <math>(+)</math> दो संख्याओं को जोड़कर उनका योग बनाती है। | |||
# '''गुणन''': गुणन संक्रिया <math>(\times)</math> दो संख्याओं को जोड़कर उनका गुणनफल बनाती है<nowiki/>। | |||
# '''घटाव''': घटाव संक्रिया <math>(-)</math> दो संख्याओं को जोड़कर उनका अंतर उत्पन्न करती है। | |||
# '''विभाजन''': विभाजन संक्रिया <math>(\div)</math> दो संख्याओं को जोड़कर उनका भागफल उत्पन्न करती है। | |||
# '''घातांक''': घातांक संक्रिया (^) दो संख्याओं को जोड़कर पहली संख्या से दूसरी संख्या की घात उत्पन्न करती है। | |||
=== द्वि-आधारी संक्रियाओं के गुण === | |||
द्वि-आधारी संक्रिया में विभिन्न गुण हो सकते हैं, जो विशिष्ट संक्रिया और उस समुच्चय पर निर्भर करता है जिस पर इसे परिभाषित किया गया है। कुछ सामान्य गुणों में सम्मिलित इस प्रकार हैं: | |||
# '''क्रमविनिमेयता''' : यदि <math>a \ \star \ b = b \ \star \ a </math> सभी के लिए <math>A</math> में <math>a</math> और <math>b</math> है, तो संक्रिया का क्रमविनिमेय है। | |||
# '''साहचर्यता''' : यदि <math>(a \ \star \ b) \ \star c= a \ \star ( b \ \star c) </math> सभी के लिए <math>A</math> में <math>a</math> , <math>b</math>. और <math>c</math> है, तो संक्रिया का साहचर्य है। | |||
# '''तत्समक अवयव :''' यदि <math>A</math> में कोई अवयव <math>e</math> इस प्रकार उपस्थित है जैसे कि <math>A</math> में सभी <math>a</math> के लिए <math>a \ \star \ e = e \ \star \ a =a </math> , तो <math>e</math> संक्रिया का तत्समक अवयव है। | |||
# '''प्रतिलोम अवयव :''' यदि <math>A</math> में प्रत्येक अवयव <math>a</math> के लिए, <math>A</math> में एक अवयव <math>b</math> इस प्रकार उपस्थित है, जैसे कि <math>a \ \star \ b = b \ \star \ a=e </math> , जहां <math>e</math> तत्समक अवयव है तो <math>b</math>, <math>a</math> का व्युत्क्रम अवयव है। | |||
== रेखांकन और आरेख == | |||
द्वि-आधारी संक्रिया को रेखांकन(ग्राफ़) और आरेखों का उपयोग करके दृश्य रूप से दर्शाया जा सकता है: | |||
# '''हस्से आरेख''': हस्से आरेख एक निर्देशित रेखांकन है जो द्वि-आधारी संक्रिया द्वारा प्रेरित आंशिक क्रम का प्रतिनिधित्व करता है। | |||
# '''केली टेबल''': केली टेबल किसी द्वि-आधारी संक्रिया का एक सारणीबद्ध प्रतिनिधित्व है, जहां पंक्तियाँ और स्तंभ समुच्चय के अवयवों का प्रतिनिधित्व करते हैं, और तालिका प्रविष्टियाँ संक्रिया के निर्गम(आउटपुट) का प्रतिनिधित्व करती हैं। | |||
== द्वि-आधारी संक्रियाओं के अनुप्रयोग == | |||
गणित और अन्य क्षेत्रों में द्वि-आधारी संक्रियाओं के अनुप्रयोगों की एक विस्तृत श्रृंखला है: | |||
# '''अंकगणित''': जोड़, घटाव, गुणा और भाग जैसे द्वि-आधारी संक्रिया अंकगणितीय संचालन में मौलिक हैं। | |||
# '''अमूर्त बीजगणित''': समूह, वलय और क्षेत्र जैसी अमूर्त बीजगणितीय संरचनाओं को परिभाषित करने और उनका अध्ययन करने के लिए द्वि-आधारी संक्रिया आवश्यक हैं। | |||
# '''कंप्यूटर विज्ञान''': द्वि-आधारी संक्रिया का उपयोग कंप्यूटर विज्ञान के विभिन्न पहलुओं में किया जाता है, जिसमें लॉजिक सर्किट, क्रिप्टोग्राफी और डेटा संरचनाएं सम्मिलित हैं। | |||
# '''भौतिकी''': द्वि-आधारी संक्रिया का उपयोग विभिन्न भौतिक सिद्धांतों, जैसे सदिश जोड़ और सदिश गुणन में किया जाता है। | |||
== निष्कर्ष == | |||
द्वि-आधारी संक्रिया, गणित में अनुप्रयोगों की एक विस्तृत श्रृंखला के साथ मूलभूत अवधारणाएं हैं। गणितीय संरचनाओं, अमूर्त बीजगणित और विभिन्न क्षेत्रों में उनके अनुप्रयोगों की गहरी समझ विकसित करने के लिए छात्रों के लिए द्वि-आधारी संक्रिया को समझना आवश्यक है। | |||
[[Category:संबंध और फलन]][[Category:गणित]][[Category:कक्षा-12]] | |||
Latest revision as of 08:52, 20 December 2023
भूमिका
गणित में, द्वि-आधारी संक्रिया एक नियम है जो दो अवयवों (जिन्हें ऑपरेंड कहा जाता है) को जोड़कर एक अन्य अवयव उत्पन्न करता है। द्वि-आधारी संक्रिया कई गणितीय संरचनाओं, जैसे समूह, वलय(रिंग) और क्षेत्र(फ़ील्ड) के मूलभूत निर्माण खंड हैं। वे अभिकलित्र(कंप्यूटर) विज्ञान और भौतिकी सहित विभिन्न अनुप्रयोगों में भी आवश्यक हैं।
परिभाषा
समुच्चय पर एक द्वि-आधारी संक्रिया से तक एक फलन(फ़ंक्शन) है। दूसरे शब्दों में, में किसी भी अवयव और के लिए, द्वि-आधारी संक्रिया , में भी, निर्गम(आउटपुट) को परिभाषित करता है।
द्वि-आधारी संक्रियाओं के उदाहरण
गणित में द्विआधारी संक्रियाओं के अनेक उदाहरण हैं:
- जोड़: जोड़ संक्रिया दो संख्याओं को जोड़कर उनका योग बनाती है।
- गुणन: गुणन संक्रिया दो संख्याओं को जोड़कर उनका गुणनफल बनाती है।
- घटाव: घटाव संक्रिया दो संख्याओं को जोड़कर उनका अंतर उत्पन्न करती है।
- विभाजन: विभाजन संक्रिया दो संख्याओं को जोड़कर उनका भागफल उत्पन्न करती है।
- घातांक: घातांक संक्रिया (^) दो संख्याओं को जोड़कर पहली संख्या से दूसरी संख्या की घात उत्पन्न करती है।
द्वि-आधारी संक्रियाओं के गुण
द्वि-आधारी संक्रिया में विभिन्न गुण हो सकते हैं, जो विशिष्ट संक्रिया और उस समुच्चय पर निर्भर करता है जिस पर इसे परिभाषित किया गया है। कुछ सामान्य गुणों में सम्मिलित इस प्रकार हैं:
- क्रमविनिमेयता : यदि सभी के लिए में और है, तो संक्रिया का क्रमविनिमेय है।
- साहचर्यता : यदि सभी के लिए में , . और है, तो संक्रिया का साहचर्य है।
- तत्समक अवयव : यदि में कोई अवयव इस प्रकार उपस्थित है जैसे कि में सभी के लिए , तो संक्रिया का तत्समक अवयव है।
- प्रतिलोम अवयव : यदि में प्रत्येक अवयव के लिए, में एक अवयव इस प्रकार उपस्थित है, जैसे कि , जहां तत्समक अवयव है तो , का व्युत्क्रम अवयव है।
रेखांकन और आरेख
द्वि-आधारी संक्रिया को रेखांकन(ग्राफ़) और आरेखों का उपयोग करके दृश्य रूप से दर्शाया जा सकता है:
- हस्से आरेख: हस्से आरेख एक निर्देशित रेखांकन है जो द्वि-आधारी संक्रिया द्वारा प्रेरित आंशिक क्रम का प्रतिनिधित्व करता है।
- केली टेबल: केली टेबल किसी द्वि-आधारी संक्रिया का एक सारणीबद्ध प्रतिनिधित्व है, जहां पंक्तियाँ और स्तंभ समुच्चय के अवयवों का प्रतिनिधित्व करते हैं, और तालिका प्रविष्टियाँ संक्रिया के निर्गम(आउटपुट) का प्रतिनिधित्व करती हैं।
द्वि-आधारी संक्रियाओं के अनुप्रयोग
गणित और अन्य क्षेत्रों में द्वि-आधारी संक्रियाओं के अनुप्रयोगों की एक विस्तृत श्रृंखला है:
- अंकगणित: जोड़, घटाव, गुणा और भाग जैसे द्वि-आधारी संक्रिया अंकगणितीय संचालन में मौलिक हैं।
- अमूर्त बीजगणित: समूह, वलय और क्षेत्र जैसी अमूर्त बीजगणितीय संरचनाओं को परिभाषित करने और उनका अध्ययन करने के लिए द्वि-आधारी संक्रिया आवश्यक हैं।
- कंप्यूटर विज्ञान: द्वि-आधारी संक्रिया का उपयोग कंप्यूटर विज्ञान के विभिन्न पहलुओं में किया जाता है, जिसमें लॉजिक सर्किट, क्रिप्टोग्राफी और डेटा संरचनाएं सम्मिलित हैं।
- भौतिकी: द्वि-आधारी संक्रिया का उपयोग विभिन्न भौतिक सिद्धांतों, जैसे सदिश जोड़ और सदिश गुणन में किया जाता है।
निष्कर्ष
द्वि-आधारी संक्रिया, गणित में अनुप्रयोगों की एक विस्तृत श्रृंखला के साथ मूलभूत अवधारणाएं हैं। गणितीय संरचनाओं, अमूर्त बीजगणित और विभिन्न क्षेत्रों में उनके अनुप्रयोगों की गहरी समझ विकसित करने के लिए छात्रों के लिए द्वि-आधारी संक्रिया को समझना आवश्यक है।