अभिकेंद्र त्वरण: Difference between revisions

From Vidyalayawiki

Listen

 
Line 12: Line 12:
*    "<math>a_r</math>" अभिकेंद्र  त्वरण का प्रतिनिधित्व करता है।
*    "<math>a_r</math>" अभिकेंद्र  त्वरण का प्रतिनिधित्व करता है।
*    "<math>v</math>" वस्तु के रैखिक वेग का प्रतिनिधित्व करता है।
*    "<math>v</math>" वस्तु के रैखिक वेग का प्रतिनिधित्व करता है।
*    "<math>r</math><math>r</math>" वृत्ताकार पथ की त्रिज्या का प्रतिनिधित्व करता है।
*    "<math>r</math>" वृत्ताकार पथ की त्रिज्या का प्रतिनिधित्व करता है।


अभिकेंद्र  त्वरण सीधे वेग के वर्ग के समानुपाती होता है और वृत्ताकार पथ की त्रिज्या के व्युत्क्रमानुपाती होता है। इसका तात्पर्य यह है कि गति बढ़ाने या त्रिज्या कम करने के परिणामस्वरूप उच्च अभिकेंद्र  त्वरण होगा।
अभिकेंद्र  त्वरण सीधे वेग के वर्ग के समानुपाती होता है और वृत्ताकार पथ की त्रिज्या के व्युत्क्रमानुपाती होता है। इसका तात्पर्य यह है कि गति बढ़ाने या त्रिज्या कम करने के परिणामस्वरूप उच्च अभिकेंद्र  त्वरण होगा।
[[File:Centripetal acceleration.JPG|thumb|एकसमान वृत्तीय गति में अभिकेन्द्रीय त्वरण की व्युत्पत्ति]]


== ध्यान देने योग्य ==
== ध्यान देने योग्य ==

Latest revision as of 17:45, 11 January 2024

Centripetal acceleration

अभिकेंद्र त्वरण, एक वृत्ताकार पथ में गतिमान वस्तु द्वारा अनुभव किया गया, त्वरण है। यह वृत्त के केंद्र की ओर निर्देशित होता है और वस्तु को घुमावदार प्रक्षेपवक्र में गतिमान रखता है।

गणना सूत्र

एक वृत्ताकार पथ में गतिमान वस्तु का अभिकेंद्र त्वरण () की गणना निम्न सूत्र का उपयोग करके की जा सकती है:

इस सूत्र में:

  •    "" अभिकेंद्र त्वरण का प्रतिनिधित्व करता है।
  •    "" वस्तु के रैखिक वेग का प्रतिनिधित्व करता है।
  •    "" वृत्ताकार पथ की त्रिज्या का प्रतिनिधित्व करता है।

अभिकेंद्र त्वरण सीधे वेग के वर्ग के समानुपाती होता है और वृत्ताकार पथ की त्रिज्या के व्युत्क्रमानुपाती होता है। इसका तात्पर्य यह है कि गति बढ़ाने या त्रिज्या कम करने के परिणामस्वरूप उच्च अभिकेंद्र त्वरण होगा।

एकसमान वृत्तीय गति में अभिकेन्द्रीय त्वरण की व्युत्पत्ति

ध्यान देने योग्य

यह ध्यान रखना महत्वपूर्ण है कि केन्द्राभिमुख त्वरण स्वयं एक बल नहीं है, बल्कि वस्तु पर कार्य करने वाले शुद्ध आवक बल का परिणाम है। न्यूटन के गति के दूसरे नियम () के अनुसार, वृत्ताकार गति को बनाए रखने के लिए आवश्यक अभिकेंद्र बल की गणना वस्तु के द्रव्यमान () को अभिकेन्द्रीय त्वरण () से ​​गुणा करके की जा सकती है:

कुछ सामान्य उदाहरण

अभिकेंद्र त्वरण के कुछ सामान्य उदाहरणों में एक घुमावदार ट्रैक के चारों ओर एक कार की गति, पृथ्वी की परिक्रमा करने वाला एक उपग्रह, या एक चक्कर लगाने वाला एक साइकिल चालक, निहित है। प्रत्येक संदर्भ में, वस्तु को एक वृत्ताकार पथ में गतिमान रखने के लिए, उस पर कार्य करने वाला एक अभिकेंद्र बल होना चाहिए, जिसके परिणामस्वरूप अभिकेन्द्रीय त्वरण होता है।