ज्या के नियम: Difference between revisions
Listen
No edit summary |
|||
| (10 intermediate revisions by the same user not shown) | |||
| Line 1: | Line 1: | ||
Law of sine | Law of sine | ||
ज्या का नियम एक गणितीय संबंध है जो त्रिभुज की भुजाओं और कोणों के बीच संबंध का वर्णन करता है। इसमें कहा | ज्या का नियम एक गणितीय संबंध है, जो त्रिभुज की भुजाओं और कोणों के बीच संबंध का वर्णन करता है। इसमें यह कहा जाता है कि त्रिभुज की एक भुजा की लंबाई का उसके विपरीत कोण की ज्या से अनुपात तीनों भुजाओं के लिए समान होता है। | ||
== गणितीय रूप से == | == गणितीय रूप से == | ||
[[File:Acute Triangle.svg|thumb|इस स्पष्टीकरण के लिए आवश्यक अक्षरों से युक्त एक त्रिकोण। A, B और C कोण हैं।भुजा a,कोण A के विपरीत पक्ष में स्थापित है। भुजा b, कोण B के विपरीत पक्ष में स्थापित है,भुजा c कोण C के विपरीत पक्ष में स्थापित है ।]] | |||
ज्या के नियम को इस प्रकार व्यक्त किया जा सकता है: | ज्या के नियम को इस प्रकार व्यक्त किया जा सकता है: | ||
<math>A / Sin (A) = B / Sin (B) = C / Sin (C) </math> | <math>A / Sin (A) = B / Sin (B) = C / Sin (C) </math> | ||
इस समीकरण में, <math>A</math>, <math>B</math>, और <math>C</math> त्रिभुज | इस समीकरण में, <math>A</math>, <math>B</math>, और <math>C</math> त्रिभुज की भुजाओं की लंबाई का प्रतिनिधित्व करते हैं, जबकि <math>A</math>, और <math>C</math> उन पक्षों के विपरीत कोणों के उपायों का प्रतिनिधित्व करते हैं। | ||
इस नियम का उपयोग त्रिभुजों से संबंधित विभिन्न | == ज्या के नियम का उपयोग == | ||
इस नियम का उपयोग त्रिभुजों से संबंधित विभिन्न मापनों के हल निकालने के लिए किया जा सकता है, विशेषकर जब किसी त्रिभुज के कुछ कोणों की माप और कुछ भुजाओं की लंबाई के बारे में जानकारी हो। ज्या के नियम को लागू करके,किसी त्रिभुज की भुजाओं की अज्ञात लम्बाई या कोणों का पता लगाया जा सकता है। | |||
== उदाहरण द्वारा वर्णन == | |||
इस नियम का उपयोग कैसे करें, इसका वर्णन करने के लिए यहां एक उदाहरण दिया गया है: | |||
== | यह मान कर के किसी एक ऐसे त्रिभुज जिसकी भुजाओं की लंबाई <math>a = 8, b = 10</math> और कोण <math>A = 40</math> डिग्री है और जिसके कोण <math>B</math> और भुजा की लंबाई <math>c</math> का माप ज्ञात करना हो ,तो | ||
ज्या के नियम | |||
<math>a / Sin (A) = b / Sin (B)</math> | |||
का उपयोग कर, | |||
दिए गए मानों को प्रतिस्थापित | दिए गए मानों को प्रतिस्थापित कर | ||
<math>8/Sin(40^{\circ}) = 10/Sin(B)</math> | <math>8/Sin(40^{\circ}) = 10/Sin(B)</math> | ||
क्रॉस-गुणा | क्रॉस-गुणा द्वारा | ||
<math>8Sin(B) = 10Sin(40^{\circ})</math> | <math>8Sin(B) = 10Sin(40^{\circ})</math> | ||
दोनों पक्षों को <math>8</math> से भाग देने पर: | दोनों पक्षों को <math>8</math> से भाग देने पर: | ||
| Line 39: | Line 41: | ||
<math>B = Sin^{-1}((10Sin(40^{\circ}))/8)</math> | <math>B = Sin^{-1}((10Sin(40^{\circ}))/8)</math> | ||
इस तरह <math>B \simeq 62.19^{\circ}</math> है। | |||
शेष कोण | शेष कोण <math>C</math> को खोजने के लिए, इस तथ्य का उपयोग करा जा सकता है कि त्रिकोण में कोणों का योग <math>180</math> डिग्री है: | ||
<math>C = 180^{\circ}-A-B</math> | <math>C = 180^{\circ}-A-B</math> | ||
| Line 49: | Line 51: | ||
<math>C \simeq 77.81^\circ</math> | <math>C \simeq 77.81^\circ</math> | ||
इसलिए, ज्या के नियम का उपयोग करते हुए, | इसलिए, ज्या के नियम का उपयोग करते हुए, यह पाया कि त्रिभुज में कोण <math>B \simeq 62.19^{\circ}</math>और कोण <math>C \simeq 77.81^\circ</math> भुजाओं की लंबाई <math>a = 8, b = 10,</math>और कोण <math>A = 40 ^\circ </math>है। | ||
== संक्षेप में == | |||
एक त्रिभुज को हल करने के लिए ज्या के नियम का उपयोग करने के लिए, प्रायः कम से कम एक भुजा-लम्बाई और उसके विपरीत कोण, या दो भुजा-लंबाई और उनके संबंधित कोणों को जानने की आवश्यकता होती है। ज्या के नियम के ज्ञान से ,समीकरण का उपयोग कर अनुपात को सेट कर किसी त्रिभुज की की भुजाओं की लंबाई व कोणों का हल निकाला जा सकता है। | |||
[[Category:समतल में गति]][[Category:भौतिक विज्ञान]][[Category:कक्षा-11]] | [[Category:समतल में गति]][[Category:भौतिक विज्ञान]][[Category:कक्षा-11]] | ||
Latest revision as of 13:01, 23 January 2024
Law of sine
ज्या का नियम एक गणितीय संबंध है, जो त्रिभुज की भुजाओं और कोणों के बीच संबंध का वर्णन करता है। इसमें यह कहा जाता है कि त्रिभुज की एक भुजा की लंबाई का उसके विपरीत कोण की ज्या से अनुपात तीनों भुजाओं के लिए समान होता है।
गणितीय रूप से
ज्या के नियम को इस प्रकार व्यक्त किया जा सकता है:
इस समीकरण में, , , और त्रिभुज की भुजाओं की लंबाई का प्रतिनिधित्व करते हैं, जबकि , और उन पक्षों के विपरीत कोणों के उपायों का प्रतिनिधित्व करते हैं।
ज्या के नियम का उपयोग
इस नियम का उपयोग त्रिभुजों से संबंधित विभिन्न मापनों के हल निकालने के लिए किया जा सकता है, विशेषकर जब किसी त्रिभुज के कुछ कोणों की माप और कुछ भुजाओं की लंबाई के बारे में जानकारी हो। ज्या के नियम को लागू करके,किसी त्रिभुज की भुजाओं की अज्ञात लम्बाई या कोणों का पता लगाया जा सकता है।
उदाहरण द्वारा वर्णन
इस नियम का उपयोग कैसे करें, इसका वर्णन करने के लिए यहां एक उदाहरण दिया गया है:
यह मान कर के किसी एक ऐसे त्रिभुज जिसकी भुजाओं की लंबाई और कोण डिग्री है और जिसके कोण और भुजा की लंबाई का माप ज्ञात करना हो ,तो
ज्या के नियम
का उपयोग कर,
दिए गए मानों को प्रतिस्थापित कर
क्रॉस-गुणा द्वारा
दोनों पक्षों को से भाग देने पर:
कोण B के लिए हल करने के लिए दोनों पक्षों की व्युत्क्रम ज्या लेना:
इस तरह है।
शेष कोण को खोजने के लिए, इस तथ्य का उपयोग करा जा सकता है कि त्रिकोण में कोणों का योग डिग्री है:
इसलिए, ज्या के नियम का उपयोग करते हुए, यह पाया कि त्रिभुज में कोण और कोण भुजाओं की लंबाई और कोण है।
संक्षेप में
एक त्रिभुज को हल करने के लिए ज्या के नियम का उपयोग करने के लिए, प्रायः कम से कम एक भुजा-लम्बाई और उसके विपरीत कोण, या दो भुजा-लंबाई और उनके संबंधित कोणों को जानने की आवश्यकता होती है। ज्या के नियम के ज्ञान से ,समीकरण का उपयोग कर अनुपात को सेट कर किसी त्रिभुज की की भुजाओं की लंबाई व कोणों का हल निकाला जा सकता है।