दो विमाओं के आपेक्षिक वेग: Difference between revisions
Listen
No edit summary |
|||
| Line 4: | Line 4: | ||
== वेगों का सादिश रूप में निरूपण == | == वेगों का सादिश रूप में निरूपण == | ||
दो वस्तुओं, <math>A</math> और <math>B</math> पर विचार करने पर , जहां यह मान के चला | |||
===== वेगों की सदिश प्रकृति पर विचार ===== | |||
दो वस्तुओं, <math>A</math> और <math>B</math> पर विचार करने पर , जहां यह मान के चला जा रहा हो की ,दोनों वस्तु दो विमाओं में घूम रही हैं,वस्तु <math>B</math> के संदर्भ में वस्तु <math>A</math> का वेग <math>V_{AB}</math> के रूप में दर्शाया जा सकता है। सापेक्ष वेग की गणना करने के लिए, <math>A</math> के वेग से <math>B</math> का वेग घटाते हैं: | |||
<math>V_{AB} = V_{A} - V_{B}</math> | <math>V_{AB} = V_{A} - V_{B}</math> | ||
दो विमाओं के परिदृश्य में, वेगों को सदिशों के रूप में व्यक्त किया जाता है, जिसमें परिमाण और दिशा दोनों शामिल होते हैं। इसलिए, सापेक्ष वेग की गणना करते समय, | दो विमाओं के परिदृश्य में, वेगों को सदिशों के रूप में व्यक्त किया जाता है, जिसमें परिमाण और दिशा दोनों शामिल होते हैं। इसलिए, सापेक्ष वेग की गणना करते समय, वेगों की सदिश प्रकृति पर विचार करने की आवश्यकता है। | ||
इसी प्रकार,वस्तु <math>A</math> के संदर्भ में वस्तु <math>B</math> का वेग <math>V_{BA}</math> के रूप में दर्शाया जा सकता है। सापेक्ष वेग की गणना करने के लिए, <math>B</math> के वेग से <math>A</math> का वेग घटाते हैं: | |||
<math>V_{BA} = V_{B} - V_{A}</math> | |||
यदि वेग उनके क्षैतिज और ऊर्ध्वाधर घटकों के संदर्भ में दिए गए हैं, तो | यदि वेग उनके क्षैतिज और ऊर्ध्वाधर घटकों के संदर्भ में दिए गए हैं, तो संबंधित घटकों को घटाकर सापेक्ष वेग की गणना की जा सकती है : | ||
<math>V_{AB_{x}} = V_{A_{x}} - V_{B_{x}}</math> | <math>V_{AB_{x}} = V_{A_{x}} - V_{B_{x}}</math> | ||
| Line 16: | Line 22: | ||
<math>V_{AB_{y}} = V_{A_{y}} - V_{B_{y}}</math> | <math>V_{AB_{y}} = V_{A_{y}} - V_{B_{y}}</math> | ||
परिणामी <math>V_{AB_{x}} </math> और <math>V_{AB_{y}} </math> मान क्रमशः सापेक्ष वेग | परिणामी <math>V_{AB_{x}} </math> और <math>V_{AB_{y}} </math> मान क्रमशः सापेक्ष वेग सादिश के क्षैतिज और ऊर्ध्वाधर घटकों का प्रतिनिधित्व करते हैं। सापेक्ष वेग का परिमाण और दिशा ज्ञात करने के लिए, हम परिणामी सादिश : | ||
<math>V_{AB} = \sqrt{{V_{AB_{x}}}^2+{V_{AB_{y}}}^2} </math> | <math>V_{AB} = \sqrt{{V_{AB_{x}}}^2+{V_{AB_{y}}}^2} </math> | ||
| Line 22: | Line 28: | ||
की गणना करने के लिए इन घटकों का उपयोग कर सकते हैं । | की गणना करने के लिए इन घटकों का उपयोग कर सकते हैं । | ||
सापेक्ष वेग | सापेक्ष वेग सादिश की दिशा उपयुक्त चतुर्भुजों को ध्यान में रखते हुए <math>\arctan(V_{AB_{y}} / V_{AB_{x}}) </math> जैसे त्रिकोणमितीय कारजों का उपयोग कर के निर्धारित की जा सकती है। | ||
क्षैतिज और ऊर्ध्वाधर दोनों घटकों पर विचार, दो विमाओं में सापेक्ष वेग एक व्यापक समझ प्रदान करता है। | क्षैतिज और ऊर्ध्वाधर दोनों घटकों पर विचार, दो विमाओं में सापेक्ष वेग एक व्यापक समझ प्रदान करता है। | ||
[[Category:समतल में गति]][[Category:भौतिक विज्ञान]][[Category:भौतिक विज्ञान]][[Category:कक्षा-11]][[Category:कक्षा-11]] | [[Category:समतल में गति]][[Category:भौतिक विज्ञान]][[Category:भौतिक विज्ञान]][[Category:कक्षा-11]][[Category:कक्षा-11]] | ||
Revision as of 13:01, 3 February 2024
Relative velocity in two dimensions
दो आयामों में सापेक्ष वेग किसी वस्तु के वेग को संदर्भित करता है जैसा कि किसी अन्य वस्तु या संदर्भ के फ्रेम के परिप्रेक्ष्य से देखा जाता है। यह वेग के क्षैतिज और ऊर्ध्वाधर दोनों घटकों को ध्यान में रखता है।
वेगों का सादिश रूप में निरूपण
वेगों की सदिश प्रकृति पर विचार
दो वस्तुओं, और पर विचार करने पर , जहां यह मान के चला जा रहा हो की ,दोनों वस्तु दो विमाओं में घूम रही हैं,वस्तु के संदर्भ में वस्तु का वेग के रूप में दर्शाया जा सकता है। सापेक्ष वेग की गणना करने के लिए, के वेग से का वेग घटाते हैं:
दो विमाओं के परिदृश्य में, वेगों को सदिशों के रूप में व्यक्त किया जाता है, जिसमें परिमाण और दिशा दोनों शामिल होते हैं। इसलिए, सापेक्ष वेग की गणना करते समय, वेगों की सदिश प्रकृति पर विचार करने की आवश्यकता है।
इसी प्रकार,वस्तु के संदर्भ में वस्तु का वेग के रूप में दर्शाया जा सकता है। सापेक्ष वेग की गणना करने के लिए, के वेग से का वेग घटाते हैं:
यदि वेग उनके क्षैतिज और ऊर्ध्वाधर घटकों के संदर्भ में दिए गए हैं, तो संबंधित घटकों को घटाकर सापेक्ष वेग की गणना की जा सकती है :
परिणामी और मान क्रमशः सापेक्ष वेग सादिश के क्षैतिज और ऊर्ध्वाधर घटकों का प्रतिनिधित्व करते हैं। सापेक्ष वेग का परिमाण और दिशा ज्ञात करने के लिए, हम परिणामी सादिश :
की गणना करने के लिए इन घटकों का उपयोग कर सकते हैं ।
सापेक्ष वेग सादिश की दिशा उपयुक्त चतुर्भुजों को ध्यान में रखते हुए जैसे त्रिकोणमितीय कारजों का उपयोग कर के निर्धारित की जा सकती है।
क्षैतिज और ऊर्ध्वाधर दोनों घटकों पर विचार, दो विमाओं में सापेक्ष वेग एक व्यापक समझ प्रदान करता है।