वास्तविक संख्याओं के लिए घातांक-नियम: Difference between revisions

From Vidyalayawiki

(added content)
No edit summary
Line 8: Line 8:
* <math>(a^p)^q=a^{pq}</math>
* <math>(a^p)^q=a^{pq}</math>
* <math>\frac{a^p}{a^q}=a^{p-q}</math>
* <math>\frac{a^p}{a^q}=a^{p-q}</math>
*<math>a^{-p}=\frac{1}{a^p}</math>
*<math>a^\frac{1}{p}=\sqrt[p]{a}</math>
*<math>a^0=1</math>
== Examples ==
# <math>5^2 \times 5^5 = 5^{2+5}=5^7</math>
# <math>(5^2)^3=5^{2 \times 3}=5^6</math>
# <math>\frac{5^6}{5^4}=5^{6-4}=5^2 =25</math>
# <math>5^{-2}=\frac{1}{5^2}=\frac{1}{25}</math>
# <math>5^\frac{1}{3}=\sqrt[3]{5}</math>
# <math>5^0=1</math>


== उदाहरण ==
== उदाहरण ==

Revision as of 08:59, 30 April 2024

घातांक के नियम गुणा और भाग की संक्रियाओं को सरल बनाते हैं और समस्याओं को आसानी से हल करने में मदद करते हैं। इस लेख में, हम घातांक के छह महत्वपूर्ण नियमों के बारे में जानेंगे।

घातांक के नियम

मान लीजिए एक वास्तविक संख्या है और और परिमेय संख्याएँ हों। तो हमारे पास हैं

Examples

उदाहरण