वैद्युतचुंबकीय तरंगों की प्रकृति: Difference between revisions
Listen
| (One intermediate revision by the same user not shown) | |||
| Line 6: | Line 6: | ||
== गणितीय समीकरण: == | == गणितीय समीकरण: == | ||
किसी प्रकाश स्त्रोत का प्रकाश नेत्रों तक बहुत शीघ्र गति से आता है - लगभग <math>299792458 | ===== प्रकाश की गति ===== | ||
किसी प्रकाश स्त्रोत का प्रकाश नेत्रों तक बहुत शीघ्र गति से आता है - लगभग<math>299792458 m/s \approx 3 \times 10^{8} m/s.</math> ( <math>30,00,00,000</math> मीटर प्रति सेकंड) और इसे प्रकाश की गति <math>(c)</math> कहते हैं। इसे दर्शाने के लिए "<math>c</math>" अक्षर का उपयोग करते हैं। | |||
[[File:Electromagneticwave3D.gif|thumb|विद्युत चुम्बकीय तरंगों की कल्पना विद्युत और चुंबकीय क्षेत्रों की स्व-प्रसारित अनुप्रस्थ दोलन तरंग के रूप में की जा सकती है। यह 3डी एनीमेशन एक समतल रैखिक रूप से ध्रुवीकृत तरंग को बाएँ से दाएँ फैलते हुए दिखाता है। ऐसी तरंग में विद्युत और चुंबकीय क्षेत्र एक-दूसरे के चरण में होते हैं, न्यूनतम और अधिकतम तक एक साथ पहुंचते हैं।]] | [[File:Electromagneticwave3D.gif|thumb|विद्युत चुम्बकीय तरंगों की कल्पना विद्युत और चुंबकीय क्षेत्रों की स्व-प्रसारित अनुप्रस्थ दोलन तरंग के रूप में की जा सकती है। यह 3डी एनीमेशन एक समतल रैखिक रूप से ध्रुवीकृत तरंग को बाएँ से दाएँ फैलते हुए दिखाता है। ऐसी तरंग में विद्युत और चुंबकीय क्षेत्र एक-दूसरे के चरण में होते हैं, न्यूनतम और अधिकतम तक एक साथ पहुंचते हैं।]] | ||
===== तरंग दैर्ध्य और आवृत्ति ===== | |||
इन लहरों की कल्पना ऐसे करें मानो ये समुद्र की लहरें हों। दो तरंग शिखरों के बीच की दूरी तरंग दैर्ध्य (<math>\lambda</math>) है। एक सेकंड में कितनी तरंगें गुजरती हैं वह आवृत्ति (<math>f</math>) है। प्रकाश तरंगों का रंग उनकी तरंग दैर्ध्य और आवृत्तियों के कारण अलग-अलग होता है। | इन लहरों की कल्पना ऐसे करें मानो ये समुद्र की लहरें हों। दो तरंग शिखरों के बीच की दूरी तरंग दैर्ध्य (<math>\lambda</math>) है। एक सेकंड में कितनी तरंगें गुजरती हैं वह आवृत्ति (<math>f</math>) है। प्रकाश तरंगों का रंग उनकी तरंग दैर्ध्य और आवृत्तियों के कारण अलग-अलग होता है। | ||
| Line 18: | Line 18: | ||
<math>c = \lambda f,</math> | <math>c = \lambda f,</math> | ||
===== प्रकाश की ऊर्जा ===== | |||
प्रकाश ऊर्जा <math>(E)</math>के प्रत्येक छोटे कोष्ठक को फोटॉन कहा जाता है। फोटॉन की ऊर्जा इस बात पर निर्भर करती है कि तरंगें कितनी शीघ्र से हिल रही हैं। इसे कलाबाजी में उपयोग में आने वाले उछाल जाल (ट्रैंपोलिन) पर कूदने जैसा समझने पर यह साफ होता है की जितना ऊंचा कूदना हो , उतनी अधिक ऊर्जा का उपयोग करा जाएगा । प्रकाश के साथ भी ऐसा ही। | प्रकाश ऊर्जा <math>(E)</math>के प्रत्येक छोटे कोष्ठक को फोटॉन कहा जाता है। फोटॉन की ऊर्जा इस बात पर निर्भर करती है कि तरंगें कितनी शीघ्र से हिल रही हैं। इसे कलाबाजी में उपयोग में आने वाले उछाल जाल (ट्रैंपोलिन) पर कूदने जैसा समझने पर यह साफ होता है की जितना ऊंचा कूदना हो , उतनी अधिक ऊर्जा का उपयोग करा जाएगा । प्रकाश के साथ भी ऐसा ही। | ||
Latest revision as of 10:26, 23 June 2024
Nature of electromagnetic waves
वैद्युतचुंबकीय तरंगों की प्रकृति:
वैद्युतचुंबकीय तरंगें अदृश्य दूतों की तरह हैं जो अंतरिक्ष के माध्यम से ऊर्जा ले जाती हैं। वे विद्युत और चुंबकीय क्षेत्रों से बने हैं जो एक साथ काम करते हैं। इन तरंगों को चलने के लिए हवा या पानी जैसे माध्यम की आवश्यकता नहीं होती - ये खाली जगह में भी चल सकती हैं।
गणितीय समीकरण:
प्रकाश की गति
किसी प्रकाश स्त्रोत का प्रकाश नेत्रों तक बहुत शीघ्र गति से आता है - लगभग ( मीटर प्रति सेकंड) और इसे प्रकाश की गति कहते हैं। इसे दर्शाने के लिए "" अक्षर का उपयोग करते हैं।
तरंग दैर्ध्य और आवृत्ति
इन लहरों की कल्पना ऐसे करें मानो ये समुद्र की लहरें हों। दो तरंग शिखरों के बीच की दूरी तरंग दैर्ध्य () है। एक सेकंड में कितनी तरंगें गुजरती हैं वह आवृत्ति () है। प्रकाश तरंगों का रंग उनकी तरंग दैर्ध्य और आवृत्तियों के कारण अलग-अलग होता है।
प्रकाश की गति, तरंग दैर्ध्य और आवृत्ति को जोड़ने वाला समीकरण है:
प्रकाश की ऊर्जा
प्रकाश ऊर्जा के प्रत्येक छोटे कोष्ठक को फोटॉन कहा जाता है। फोटॉन की ऊर्जा इस बात पर निर्भर करती है कि तरंगें कितनी शीघ्र से हिल रही हैं। इसे कलाबाजी में उपयोग में आने वाले उछाल जाल (ट्रैंपोलिन) पर कूदने जैसा समझने पर यह साफ होता है की जितना ऊंचा कूदना हो , उतनी अधिक ऊर्जा का उपयोग करा जाएगा । प्रकाश के साथ भी ऐसा ही।
फोटॉन ऊर्जा का समीकरण है:
जहाँ:
एक छोटी संख्या है जिसे प्लैंक स्थिरांक कहा जाता है (इसे प्रकृति के लिए एक विशेष कोड की तरह समझें, यह लगभग है)
संक्षेप में
विद्युत चुम्बकीय तरंगें, विद्युत और चुंबकीय क्षेत्रों से बनी ये ठंडी ऊर्जा वाहक हैं। वे प्रकाश की गति से अंतरिक्ष में घूमते हैं, और उनका रंग इस बात पर निर्भर करता है कि वे कितने लंबे या छोटे हैं (तरंग दैर्ध्य) और वे कितनी शीघ्र से हिलते हैं (आवृत्ति)। ये तरंगें ऊर्जा के कोष्ठक (फोटॉन) की तरह होती हैं, और इनकी ऊर्जा उनकी आवृत्ति पर निर्भर करती है।