त्रिज्यखंड और वृत्तखंड के क्षेत्रेफल: Difference between revisions

From Vidyalayawiki

No edit summary
 
(4 intermediate revisions by one other user not shown)
Line 1: Line 1:
== त्रिज्यखंड ==
== त्रिज्यखंड ==
[[File:Sector.jpg|alt=Fig. 1 - Sector|thumb|150x150px|चित्र 1 -त्रिज्यखंड ]]
[[File:Sector.jpg|alt=Fig. 1 - Sector|thumb|150x150px|चित्र 1 -त्रिज्यखंड ]]
किसी वृत्त की दो त्रिज्याओं के बीच का वृत्ताकार क्षेत्र और उनके बीच का चाप वृत्त का त्रिज्यखंड कहलाता है। सेक्टर सदैव वृत्त के केंद्र से प्रारंभ होता है। अर्धवृत्त को वृत्त का त्रिज्यखंड भी कहा जाता है।
किसी वृत्त की दो त्रिज्याओं के बीच का वृत्ताकार क्षेत्र और उनके बीच का चाप वृत्त का त्रिज्यखंड कहलाता है। त्रिज्यखंड सदैव वृत्त के केंद्र से प्रारंभ होता है। अर्धवृत्त को वृत्त का त्रिज्यखंड भी कहा जाता है।


त्रिज्यखंड दो प्रकार के होते हैं, लघु त्रिज्यखंड और दीर्घ त्रिज्यखंड।
त्रिज्यखंड दो प्रकार के होते हैं, लघु त्रिज्यखंड और दीर्घ त्रिज्यखंड।
Line 35: Line 35:
{| class="wikitable"
{| class="wikitable"
|+
|+
|Area of the sector of angle  <math>\theta = \frac{\theta}{360}\times\pi r^2</math> where is <math>r</math> the radius of the circle and <math>\theta</math> the angle of the sector in degrees.
!कोण <math>\theta</math> के त्रिज्यखंड का क्षेत्रफल=<math>\frac{\theta}{360}\times\pi r^2</math>,जहाँ <math>r</math> वृत्त की त्रिज्या है और <math>\theta</math> घात में त्रिज्यखंड का कोण है।
|}
|}
'''चाप की लम्बाई एवं क्षेत्रफल <math>APB</math>''', '''त्रिज्यखंड <math>OAPB</math>''' '''के अनुरूप'''  
'''त्रिज्यखंड <math>OAPB</math>''' '''संगत''' '''चाप की लम्बाई एवं क्षेत्रफल <math>APB</math>'''  
[[File:Sector-length.jpg|alt=Fig 4 - Sector|thumb|151x151px|चित्र 4 -त्रिज्यखंड ]]
[[File:Sector-length.jpg|alt=Fig 4 - Sector|thumb|151x151px|चित्र 4 -त्रिज्यखंड ]]
चित्र 4 में।  
चित्र 4 में।  
Line 43: Line 43:
जब केंद्र पर कोण की माप का घात <math>360</math> है, तो चाप की लंबाई = <math>2\Pi r</math>
जब केंद्र पर कोण की माप का घात <math>360</math> है, तो चाप की लंबाई = <math>2\Pi r</math>


अत: जब केंद्र पर कोण की माप की डिग्री <math>\theta</math> है, तो चाप की लंबाई =<math>\frac{\theta}{360}\times2\pi r</math> होती है
अत: जब केंद्र पर कोण की माप का घात <math>\theta</math> है, तो चाप की लंबाई =<math>\frac{\theta}{360}\times2\pi r</math> होती है
{| class="wikitable"
{| class="wikitable"
|Length of the arc = <math>\frac{\theta}{360}\times2\pi r</math>
!चाप की लंबाई = <math>\frac{\theta}{360}\times2\pi r</math>
|}वृत्तखंड  का क्षेत्रफल '''<math>APB</math>''' = त्रिज्यखण्ड का क्षेत्रफल '''<math>OAPB</math>''' - <math>\triangle OAB</math> का क्षेत्रफल  
|}
वृत्तखंड  का क्षेत्रफल '''<math>APB</math>''' = त्रिज्यखण्ड का क्षेत्रफल '''<math>OAPB</math>''' - <math>\triangle OAB</math> का क्षेत्रफल  


चित्र 3 और चित्र 4 से
चित्र 3 और चित्र 4 से
Line 58: Line 59:
<math>21</math> cm त्रिज्या वाले एक वृत्त में, एक चाप केंद्र पर <math>60^\circ</math> का कोण अंतरित करता है।
<math>21</math> cm त्रिज्या वाले एक वृत्त में, एक चाप केंद्र पर <math>60^\circ</math> का कोण अंतरित करता है।


खोजो:
ज्ञात करें:


(i) चाप की लंबाई (ii) चाप द्वारा बनाए गए त्रिज्यखंड का क्षेत्रफल (iii) संगत जीवा द्वारा बनाए गए वृत्तखंड का क्षेत्रफल
(i) चाप की लंबाई (ii) चाप द्वारा बनाए गए त्रिज्यखंड का क्षेत्रफल (iii) संगत जीवा द्वारा बनाए गए वृत्तखंड का क्षेत्रफल
Line 80: Line 81:
= <math>\left[231  - \frac{441\sqrt 3}{4} \right]
= <math>\left[231  - \frac{441\sqrt 3}{4} \right]
</math> cm<sup>2</sup>
</math> cm<sup>2</sup>
[[Category:वृत्तों से संबंधित क्षेत्रफल]]
[[Category:गणित]]
[[Category:कक्षा-10]]

Latest revision as of 20:23, 26 September 2024

त्रिज्यखंड

Fig. 1 - Sector
चित्र 1 -त्रिज्यखंड

किसी वृत्त की दो त्रिज्याओं के बीच का वृत्ताकार क्षेत्र और उनके बीच का चाप वृत्त का त्रिज्यखंड कहलाता है। त्रिज्यखंड सदैव वृत्त के केंद्र से प्रारंभ होता है। अर्धवृत्त को वृत्त का त्रिज्यखंड भी कहा जाता है।

त्रिज्यखंड दो प्रकार के होते हैं, लघु त्रिज्यखंड और दीर्घ त्रिज्यखंड।

चित्र 1 में , केंद्र सहित वृत्त का एक त्रिज्यखंड है। को त्रिज्यखंड का कोण कहा जाता है। को लघु त्रिज्यखंड कहा जाता है और को दीर्घ त्रिज्यखंड कहा जाता है।

दीर्घ त्रिज्यखंड का कोण है।

वृत्तखंड

File:Segment.jpg
चित्र 2 -वृत्तखंड

किसी जीवा और संगत चाप के बीच घिरे वृत्ताकार क्षेत्र के भाग को वृत्त का खंड कहा जाता है।

चित्र 2 में केंद्र वाले वृत्त की एक जीवा है।

वृत्त का एक खंड है।

खंड दो प्रकार के होते हैं, लघु वृत्तखंड और दीर्घ वृत्तखंड ।

को लघु वृत्तखंड कहा जाता है और

को दीर्घ वृत्तखंड कहा जाता है।

त्रिज्यखंड का क्षेत्रफल

File:Sector-1.jpg
चित्र 3 -त्रिज्यखंड

आइए एक त्रिज्यखंड का क्षेत्रफल ज्ञात करें।

चित्र 3 में. चलो मान लें कि एक वृत्त का त्रिज्यखंड है जिसका केंद्र , और त्रिज्या है तथा , 𝜃 है।

हम जानते हैं कि एक वृत्त का क्षेत्रफल है।

जब केंद्र पर कोण के माप का घात है, तो त्रिज्यखंड का क्षेत्रफल = है, इसलिए जब केंद्र पर कोण के माप का घात है,

तो त्रिज्यखंड का क्षेत्रफल =

कोण के त्रिज्यखंड का क्षेत्रफल=,जहाँ वृत्त की त्रिज्या है और घात में त्रिज्यखंड का कोण है।

त्रिज्यखंड संगत चाप की लम्बाई एवं क्षेत्रफल

File:Sector-length.jpg
चित्र 4 -त्रिज्यखंड

चित्र 4 में।

जब केंद्र पर कोण की माप का घात है, तो चाप की लंबाई =

अत: जब केंद्र पर कोण की माप का घात है, तो चाप की लंबाई = होती है

चाप की लंबाई =

वृत्तखंड का क्षेत्रफल = त्रिज्यखण्ड का क्षेत्रफल - का क्षेत्रफल

चित्र 3 और चित्र 4 से

दीर्घ त्रिज्यखंड का क्षेत्रफल = – लघु त्रिज्यखंड का क्षेत्रफल

दीर्घ वृत्तखंड का क्षेत्रफल = – लघु वृत्तखंड का क्षेत्रफल

उदाहरण

File:Sector-segment problem.jpg
उदाहरण- 1

cm त्रिज्या वाले एक वृत्त में, एक चाप केंद्र पर का कोण अंतरित करता है।

ज्ञात करें:

(i) चाप की लंबाई (ii) चाप द्वारा बनाए गए त्रिज्यखंड का क्षेत्रफल (iii) संगत जीवा द्वारा बनाए गए वृत्तखंड का क्षेत्रफल

यहाँ

(i) चाप की लंबाई =

= = = cm

(ii) त्रिज्यखंड का क्षेत्रफल =

= = = cm2

(iii)वृत्तखंड का क्षेत्रफल संगत जीवा द्वारा निर्मित = त्रिज्यखंड का क्षेत्रफल - त्रिभुज का क्षेत्रफल

=

=

= cm2