बहुभुज: Difference between revisions

From Vidyalayawiki

(added content)
(added internal links)
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
बहुभुज एक द्वि-आयामी ज्यामितीय आकृति है जिसमें पक्षों की एक सीमित संख्या होती है। बहुभुज की भुजाएँ एक दूसरे से सिरे से सिरे तक जुड़े हुए सीधी रेखा खंडों से बनी होती हैं। इस प्रकार, बहुभुज के रेखाखंडों को भुजाएँ या किनारे कहा जाता है। वह बिंदु जहाँ दो रेखाखंड मिलते हैं उसे शीर्ष या कोने कहा जाता है, इसलिए एक कोण बनता है। बहुभुज का एक उदाहरण तीन भुजाओं वाला त्रिभुज है। वृत्त भी एक समतल आकृति है लेकिन इसे बहुभुज नहीं माना जाता है, क्योंकि यह एक घुमावदार आकृति है और इसमें भुजाएँ या कोण नहीं होते हैं। इसलिए, हम कह सकते हैं कि सभी बहुभुज 2d आकार हैं लेकिन सभी द्वि-आयामी आकृतियाँ बहुभुज नहीं हैं।  
बहुभुज एक द्वि-आयामी ज्यामितीय आकृति है जिसमें पक्षों की एक सीमित संख्या होती है। बहुभुज की भुजाएँ एक दूसरे से सिरे से सिरे तक जुड़े हुए सीधी रेखा खंडों से बनी होती हैं। इस प्रकार, बहुभुज के रेखाखंडों को भुजाएँ या किनारे कहा जाता है। वह बिंदु जहाँ दो रेखाखंड मिलते हैं उसे शीर्ष या कोने कहा जाता है, इसलिए एक कोण बनता है। बहुभुज का एक उदाहरण तीन भुजाओं वाला त्रिभुज है। वृत्त भी एक समतल आकृति है लेकिन इसे बहुभुज नहीं माना जाता है, क्योंकि यह एक घुमावदार आकृति है और इसमें भुजाएँ या कोण नहीं होते हैं। इसलिए, हम कह सकते हैं कि सभी बहुभुज <math>2D</math> आकार हैं लेकिन सभी द्वि-आयामी आकृतियाँ बहुभुज नहीं हैं।  


== बहुभुज क्या होते हैं? ==
== बहुभुज क्या होते हैं? ==
Line 12: Line 12:
|+
|+
|[[File:Triangolo-Scaleno.svg|alt=Triangle|none|thumb|100x100px|त्रिभुज]]
|[[File:Triangolo-Scaleno.svg|alt=Triangle|none|thumb|100x100px|त्रिभुज]]
|[[File:Parallelogram1.svg|alt=Parallelogram|none|thumb|100x100px|चतुर्भुज]]
|[[File:Parallelogram1.svg|alt=Parallelogram|none|thumb|100x100px|[[चतुर्भुज]]]]
|[[File:Pentagon.svg|alt=Pentagon|none|thumb|100x100px|पंचकोण]]
|[[File:Pentagon.svg|alt=Pentagon|none|thumb|100x100px|पंचकोण]]
|-
|-
Line 21: Line 21:


== बहुभुज के गुणधर्म ==
== बहुभुज के गुणधर्म ==
The properties of polygons are based on their sides and angles.
बहुभुजों के गुण उनकी भुजाओं और कोणों पर आधारित होते हैं।


The sum of all the interior angles of an <math>n-</math>sided polygon is <math>(n-2) \times 180 ^\circ</math>.  
एक <math>n-</math>भुजा वाले बहुभुज के सभी आंतरिक [[कोण|कोणों]] का योग होता है <math>(n-2) \times 180 ^\circ</math>.  


The number of diagonals in a polygon with <math>n-</math>sides = <math>\frac{n(n-3)}{2}</math>
• <math>n-</math>भुजाओं वाले बहुभुज में विकर्णों की संख्या = <math>\frac{n(n-3)}{2}</math>


The number of triangles formed by joining the diagonals from one corner of a polygon = <math>n-2</math>
किसी बहुभुज के एक कोने से विकर्णों को मिलाने पर बनने वाले त्रिभुजों की संख्या = <math>n-2</math>


The measure of each interior angle of <math>n-</math>sided regular polygon = <math>\frac{(n-2) \times 180 ^\circ}{n}</math>  
• <math>n-</math>भुजा वाले नियमित बहुभुज के प्रत्येक आंतरिक कोण का माप = <math>\frac{(n-2) \times 180 ^\circ}{n}</math>  


The measure of each exterior angle of an <math>n-</math>sided regular polygon = <math>\frac{360 ^\circ}{n}</math>
एक <math>n-</math>भुजा वाले नियमित बहुभुज के प्रत्येक बाह्य कोण का माप= <math>\frac{360 ^\circ}{n}</math>


== बहुभुज के प्रकार ==
== बहुभुज के प्रकार ==
Line 64: Line 64:
[[Category:गणित]]
[[Category:गणित]]
[[Category:कक्षा-10]]
[[Category:कक्षा-10]]
=== उत्तल बहुभुज ===
यदि किसी बहुभुज के सभी आंतरिक कोण <math>180^\circ</math> से बिल्कुल कम  हैं , तो इसे उत्तल बहुभुज के रूप में जाना जाता है ।
=== अवतल बहुभुज ===
यदि किसी बहुभुज का एक या अधिक आंतरिक कोण <math>180^\circ</math> से अधिक हो , तो इसे अवतल बहुभुज के रूप में जाना जाता है ।

Latest revision as of 07:48, 5 November 2024

बहुभुज एक द्वि-आयामी ज्यामितीय आकृति है जिसमें पक्षों की एक सीमित संख्या होती है। बहुभुज की भुजाएँ एक दूसरे से सिरे से सिरे तक जुड़े हुए सीधी रेखा खंडों से बनी होती हैं। इस प्रकार, बहुभुज के रेखाखंडों को भुजाएँ या किनारे कहा जाता है। वह बिंदु जहाँ दो रेखाखंड मिलते हैं उसे शीर्ष या कोने कहा जाता है, इसलिए एक कोण बनता है। बहुभुज का एक उदाहरण तीन भुजाओं वाला त्रिभुज है। वृत्त भी एक समतल आकृति है लेकिन इसे बहुभुज नहीं माना जाता है, क्योंकि यह एक घुमावदार आकृति है और इसमें भुजाएँ या कोण नहीं होते हैं। इसलिए, हम कह सकते हैं कि सभी बहुभुज आकार हैं लेकिन सभी द्वि-आयामी आकृतियाँ बहुभुज नहीं हैं।

बहुभुज क्या होते हैं?

बहुभुज एक बंद आकृति है जो द्वि-आयामी समतल में रेखाखंडों (वक्रों से नहीं) से बनी होती है। बहुभुज दो शब्दों का संयोजन है, यानी पॉली (जिसका अर्थ है कई) और गोन (जिसका अर्थ है भुजाएँ)।

एक बंद आकृति बनाने के लिए, सिरे से सिरे तक जुड़ने के लिए कम से कम तीन रेखा खंडों की आवश्यकता होती है। इस प्रकार न्यूनतम तीन भुजाओं वाले बहुभुज को त्रिभुज के रूप में जाना जाता है और इसे 3-भुज भी कहा जाता है। एक पक्षीय बहुभुज को भुज कहा जाता है।

बहुभुज आकृति

परिभाषा के अनुसार, हम जानते हैं कि बहुभुज रेखाखंडों से बना होता है। नीचे कुछ बहुभुजों की आकृतियाँ दी गई हैं जो विभिन्न संख्या में रेखाखंडों से घिरी हुई हैं।

Triangle
त्रिभुज
Pentagon
पंचकोण
Hexagon
षटकोण
Octagon
अष्टकोण

बहुभुज के गुणधर्म

बहुभुजों के गुण उनकी भुजाओं और कोणों पर आधारित होते हैं।

• एक भुजा वाले बहुभुज के सभी आंतरिक कोणों का योग होता है .

भुजाओं वाले बहुभुज में विकर्णों की संख्या =

• किसी बहुभुज के एक कोने से विकर्णों को मिलाने पर बनने वाले त्रिभुजों की संख्या =

भुजा वाले नियमित बहुभुज के प्रत्येक आंतरिक कोण का माप =

• एक भुजा वाले नियमित बहुभुज के प्रत्येक बाह्य कोण का माप=

बहुभुज के प्रकार

भुजाओं और कोणों के आधार पर , बहुभुजों को निम्नलिखित प्रकारों में वर्गीकृत किया जाता है :

  1. नियमित बहुभुज
  2. अनियमित बहुभुज
  3. उत्तल बहुभुज
  4. अवतल बहुभुज

नियमित बहुभुज

यदि बहुभुज की सभी भुजाएँ और आंतरिक कोण बराबर हों , तो इसे नियमित बहुभुज के रूप में जाना जाता है ।

उदाहरण : वर्ग, समबाहु त्रिभुज आदि ।

Square
वर्ग


अनियमित बहुभुज

यदि किसी बहुभुज की सभी भुजाएँ और आंतरिक कोण अलग-अलग माप के हों, तो उसे अनियमित बहुभुज कहते हैं। इसका मतलब है कि या तो भुजाएँ अलग-अलग लंबाई की हैं या कोण अलग-अलग हैं, जो कि बहुभुज को अनियमित कहने के लिए पर्याप्त है। उदाहरण के लिए, एक विषमबाहु त्रिभुज, एक आयत, एक पतंग, आदि।

Rectangle
आयत( समकोण समानान्तर चतुर्भुज)

उत्तल बहुभुज

यदि किसी बहुभुज के सभी आंतरिक कोण से कम हैं, तो उसे उत्तल बहुभुज के रूप में जाना जाता है। शीर्ष आकृति के केंद्र से बाहर की ओर इंगित करता है।

Pentagon
पंचकोण

अवतल बहुभुज

यदि किसी बहुभुज के एक या अधिक आंतरिक कोण से अधिक हैं, तो उसे अवतल बहुभुज के रूप में जाना जाता है। एक अवतल बहुभुज में कम से कम चार भुजाएँ हो सकती हैं। शीर्ष बहुभुज के भीतर की ओर इंगित करता है।

File:Concave polygon.jpg
अवतल बहुभुज