सांख्यिकी: Difference between revisions
No edit summary |
(added internal links) |
||
| (5 intermediate revisions by 3 users not shown) | |||
| Line 1: | Line 1: | ||
== भूमिका == | == भूमिका == | ||
प्रतिदिन हमें तथ्यों, संख्यात्मक अंकों, सारणियों, आलेखों (ग्राफों) आदि के रूप में विभिन्न प्रकार की सूचनाएँ देखने को मिलती रहती हैं। ये सूचनाएँ हमें समाचार पत्रों, टेलीविजनों, पत्रिकाओं और संचार के अन्य साधनों से उपलब्ध होती रहती हैं। | प्रतिदिन हमें तथ्यों, [[संख्या|संख्यात्मक]] अंकों, सारणियों, आलेखों (ग्राफों) आदि के रूप में विभिन्न प्रकार की सूचनाएँ देखने को मिलती रहती हैं। ये सूचनाएँ हमें समाचार पत्रों, टेलीविजनों, पत्रिकाओं और संचार के अन्य साधनों से उपलब्ध होती रहती हैं। | ||
एक निश्चित उद्देश्य से एकत्रित किए गए इन तथ्यों या अंकों को, जो संख्यात्मक या अन्य रूप में हो सकते हैं, आंकड़े ('' | एक निश्चित उद्देश्य से एकत्रित किए गए इन तथ्यों या अंकों को, जो संख्यात्मक या अन्य रूप में हो सकते हैं, आंकड़े (''डाटा'') कहा जाता है। अंग्रेजी शब्द "''डाटा''" लैटिन शब्द ''डाटम'' का बहुवचन है। | ||
अर्थपूर्ण सूचनाएँ उपलब्ध करने से संबंधित अध्ययन गणित की एक शाखा में किया जाता है, जिसे ''सांख्यिकी'' ''( | अर्थपूर्ण सूचनाएँ उपलब्ध करने से संबंधित अध्ययन गणित की एक शाखा में किया जाता है, जिसे ''सांख्यिकी'' ''(स्टेटिस्टिक्स'' ) कहा जाता है। | ||
''सांख्यिकी'' | ''सांख्यिकी'' में [[आंकड़े|आंकड़ों]] के संग्रह करने, व्यवस्थित करने, विश्लेषण करने और निर्वचन करने के बारे में अध्ययन किया जाता है । भिन्न-भिन्न संदर्भों में शब्द 'स्टेटिस्टिक्स ' का अर्थ भिन्न-भिन्न होता है। | ||
== आंकड़ों का संग्रह == | == आंकड़ों का संग्रह == | ||
| Line 24: | Line 21: | ||
(iv) आपके विद्यालय में या उसके आस-पास के 15 पौधों की लंबाइयाँ । | (iv) आपके विद्यालय में या उसके आस-पास के 15 पौधों की लंबाइयाँ । | ||
स्वयं अंवेषक ने अपने दिमाग में एक निश्चित उद्देश्य रखकर सूचनाओं को एकत्रित किया है। इस प्रकार एकत्रित किए गए आंकड़ों को प्राथमिक आंकड़े ('' | स्वयं अंवेषक ने अपने दिमाग में एक निश्चित उद्देश्य रखकर सूचनाओं को एकत्रित किया है। इस प्रकार एकत्रित किए गए आंकड़ों को प्राथमिक आंकड़े (''प्राइमरी डाटा'' ) कहा जाता है। | ||
जहाँ किसी स्रोत से, जिसमें सूचनाएँ पहले से ही एकत्रित हैं, आंकड़े प्राप्त किए गए हों उन आंकड़ों को गौण आंकड़े ('' | जहाँ किसी स्रोत से, जिसमें सूचनाएँ पहले से ही एकत्रित हैं, आंकड़े प्राप्त किए गए हों उन आंकड़ों को [[गौण आंकड़े]] (सेकेंडरी डाटा'')'' कहा जाता है। | ||
== आंकड़ों का प्रस्तुतिकरण == | == आंकड़ों का प्रस्तुतिकरण == | ||
| Line 32: | Line 29: | ||
== आंकड़ों का आलेखीय निरूपण == | == आंकड़ों का आलेखीय निरूपण == | ||
एक कहावत यह रही है कि, एक चित्र हजार शब्द से भी उत्तम होता है। प्रायः अलग-अलग मदों की तुलनाओं को आलेखों ( | एक कहावत यह रही है कि, एक चित्र हजार शब्द से भी उत्तम होता है। प्रायः अलग-अलग मदों की तुलनाओं को आलेखों (''ग्राफों'') की सहायता से अच्छी तरह से दर्शाया जाता है। तब वास्तविक आंकड़ों की तुलना में इस निरूपण को समझना अधिक सरल हो जाता है। इस अनुच्छेद में, हम निम्नलिखित आलेखीय निरूपणों का अध्ययन करेंगे। | ||
(A) दंड आलेख ('' | (A) दंड आलेख (''बार ग्राफ'') | ||
(B) एकसमान चौड़ाई और परिवर्ती चौड़ाइयों वाले आयतचित्र ('' | (B) एकसमान चौड़ाई और परिवर्ती चौड़ाइयों वाले आयतचित्र (''हिस्टोग्राम्स'' ) | ||
(C) बारंबारता बहुभुज ('' | (C) बारंबारता बहुभुज (''फ्रीक्वेंसी पॉलीगोन'') | ||
[[File:Adobe Flex ColumnChart.png|alt=Bar graph|thumb| | [[File:Adobe Flex ColumnChart.png|alt=Bar graph|thumb| '''दंड आलेख'''|263x263px]] | ||
आईए हम इन आलेखीय निरूपणों को विस्तार से देखें : | आईए हम इन आलेखीय निरूपणों को विस्तार से देखें : | ||
'''(A) दंड आलेख ('' | '''(A) दंड आलेख (''बार ग्राफ'' )''' | ||
दंड आलेख आंकड़ों का एक चित्रीय निरूपण होता है जिसमें प्राय: एक अक्ष (मान लीजिए x-अक्ष) पर एक चर को प्रकट करने वाले एक समान चौड़ाई के दंड खींचे जाते हैं जिनके बीच में बराबर-बराबर दूरियाँ छोड़ी जाती हैं। चर के मान दूसरे अक्ष (मान लीजिए y-अक्ष) पर दिखाए जाते हैं और दंडों की ऊँचाइयाँ चर के मानों पर निर्भर करती हैं। | दंड आलेख आंकड़ों का एक चित्रीय निरूपण होता है जिसमें प्राय: एक अक्ष (मान लीजिए x-अक्ष) पर एक चर को प्रकट करने वाले एक समान चौड़ाई के दंड खींचे जाते हैं जिनके बीच में बराबर-बराबर दूरियाँ छोड़ी जाती हैं। चर के मान दूसरे अक्ष (मान लीजिए y-अक्ष) पर दिखाए जाते हैं और दंडों की ऊँचाइयाँ चर के मानों पर निर्भर करती हैं। | ||
'''(B) आयतचित्र ('' | '''(B) [[आयतचित्र]] (''हिस्टोग्राम्स'' )''' | ||
[[File:Histogram example.svg|alt=Histogram|thumb| | [[File:Histogram example.svg|alt=Histogram|thumb|'''आयतचित्र''' |261x261px]] | ||
यह संतत वर्ग अंतरालों के लिए प्रयुक्त दंड आलेख की भाँति निरूपण का एक रूप है। | यह संतत वर्ग अंतरालों के लिए प्रयुक्त दंड आलेख की भाँति निरूपण का एक रूप है। | ||
'''(C) बारंबारता बहुभुज ('' | '''(C) बारंबारता बहुभुज (''फ्रीक्वेंसी पॉलीगोन'')''' | ||
मात्रात्मक आंकड़ों ('' | मात्रात्मक आंकड़ों (''क्वांटिटेटिव डाटा'' ) और उनकी बारंबारताओं को निरूपित करने की एक अन्य विधि भी है। वह है एक बहुभुज (''पॉलीगोन'' )। | ||
आयतचित्र बनाए बिना ही बारंबारता बहुभुजों को स्वतंत्र रूप से भी बनाया जा सकता है। इसके लिए हमें आंकड़ों में प्रयुक्त वर्ग अंतरालों के मध्य बिन्दुओं की आवश्यकता होती है। वर्ग अंतरालों के इन मध्य-बिंदुओं को वर्ग - चिह्न ('' | आयतचित्र बनाए बिना ही बारंबारता बहुभुजों को स्वतंत्र रूप से भी बनाया जा सकता है। इसके लिए हमें आंकड़ों में प्रयुक्त वर्ग अंतरालों के मध्य बिन्दुओं की आवश्यकता होती है। वर्ग अंतरालों के इन मध्य-बिंदुओं को वर्ग - चिह्न (''क्लास-मार्क्स'' ) कहा जाता है। | ||
किसी वर्ग अंतराल का वर्ग चिह्न ज्ञात करने के लिए, हम उस वर्ग अंतराल की उपरि सीमा ('' | किसी वर्ग अंतराल का वर्ग चिह्न ज्ञात करने के लिए, हम उस वर्ग अंतराल की उपरि सीमा (''अप्पर लिमिट'' ) और निम्न सीमा (''लोअर लिमिट'' ) का योग ज्ञात करते हैं और इस योग को 2 से भाग दे देते हैं। | ||
इस तरह, | इस तरह, | ||
'''''वर्ग -चिह्न = (उपरि सीमा + निम्न सीमा)/2''''' | '''''वर्ग -चिह्न = (उपरि सीमा + निम्न सीमा)/2''''' | ||
[[Category:सांख्यिकी]][[Category: | [[Category:सांख्यिकी]] | ||
[[Category:गणित]] | |||
[[Category:कक्षा-9]][[Category:गणित]][[Category:गणित]] | |||
Latest revision as of 09:24, 5 November 2024
भूमिका
प्रतिदिन हमें तथ्यों, संख्यात्मक अंकों, सारणियों, आलेखों (ग्राफों) आदि के रूप में विभिन्न प्रकार की सूचनाएँ देखने को मिलती रहती हैं। ये सूचनाएँ हमें समाचार पत्रों, टेलीविजनों, पत्रिकाओं और संचार के अन्य साधनों से उपलब्ध होती रहती हैं।
एक निश्चित उद्देश्य से एकत्रित किए गए इन तथ्यों या अंकों को, जो संख्यात्मक या अन्य रूप में हो सकते हैं, आंकड़े (डाटा) कहा जाता है। अंग्रेजी शब्द "डाटा" लैटिन शब्द डाटम का बहुवचन है।
अर्थपूर्ण सूचनाएँ उपलब्ध करने से संबंधित अध्ययन गणित की एक शाखा में किया जाता है, जिसे सांख्यिकी (स्टेटिस्टिक्स ) कहा जाता है।
सांख्यिकी में आंकड़ों के संग्रह करने, व्यवस्थित करने, विश्लेषण करने और निर्वचन करने के बारे में अध्ययन किया जाता है । भिन्न-भिन्न संदर्भों में शब्द 'स्टेटिस्टिक्स ' का अर्थ भिन्न-भिन्न होता है।
आंकड़ों का संग्रह
आइए हम निम्नलिखित क्रियाकलाप करके आंकड़ों को एकत्रित करने का कार्य प्रारम्भ करें।
क्रियाकलाप 1: अपनी कक्षा के विद्यार्थियों को चार समूहों में बाँट दीजिए। प्रत्येक समूह को निम्न प्रकार के आंकड़ों में से एक प्रकार के आंकड़ों को संग्रह करने का काम दे दीजिए।
(i) अपनी कक्षा के 20 विद्यार्थियों की लंबाई ।
(ii) अपनी कक्षा में किसी एक महीने के प्रत्येक दिन अनुपस्थित रहे विद्यार्थियों की संख्या ।
(iii) आपके कक्षा मित्रों के परिवारों के सदस्यों की संख्या।
(iv) आपके विद्यालय में या उसके आस-पास के 15 पौधों की लंबाइयाँ ।
स्वयं अंवेषक ने अपने दिमाग में एक निश्चित उद्देश्य रखकर सूचनाओं को एकत्रित किया है। इस प्रकार एकत्रित किए गए आंकड़ों को प्राथमिक आंकड़े (प्राइमरी डाटा ) कहा जाता है।
जहाँ किसी स्रोत से, जिसमें सूचनाएँ पहले से ही एकत्रित हैं, आंकड़े प्राप्त किए गए हों उन आंकड़ों को गौण आंकड़े (सेकेंडरी डाटा) कहा जाता है।
आंकड़ों का प्रस्तुतिकरण
आंकड़ों को एकत्रित करने का काम समाप्त होने के उपरांत ही, अंवेषक को इन आंकड़ों को ऐसे रूप में प्रस्तुत करने की विधियों को ज्ञात करना होता है जो अर्थपूर्ण हो, सरलता से समझी जा सकती हों और एक ही झलक में उसके मुख्य लक्षणों को जाना जा सकता हो।
आंकड़ों का आलेखीय निरूपण
एक कहावत यह रही है कि, एक चित्र हजार शब्द से भी उत्तम होता है। प्रायः अलग-अलग मदों की तुलनाओं को आलेखों (ग्राफों) की सहायता से अच्छी तरह से दर्शाया जाता है। तब वास्तविक आंकड़ों की तुलना में इस निरूपण को समझना अधिक सरल हो जाता है। इस अनुच्छेद में, हम निम्नलिखित आलेखीय निरूपणों का अध्ययन करेंगे।
(A) दंड आलेख (बार ग्राफ)
(B) एकसमान चौड़ाई और परिवर्ती चौड़ाइयों वाले आयतचित्र (हिस्टोग्राम्स )
(C) बारंबारता बहुभुज (फ्रीक्वेंसी पॉलीगोन)
आईए हम इन आलेखीय निरूपणों को विस्तार से देखें :
(A) दंड आलेख (बार ग्राफ )
दंड आलेख आंकड़ों का एक चित्रीय निरूपण होता है जिसमें प्राय: एक अक्ष (मान लीजिए x-अक्ष) पर एक चर को प्रकट करने वाले एक समान चौड़ाई के दंड खींचे जाते हैं जिनके बीच में बराबर-बराबर दूरियाँ छोड़ी जाती हैं। चर के मान दूसरे अक्ष (मान लीजिए y-अक्ष) पर दिखाए जाते हैं और दंडों की ऊँचाइयाँ चर के मानों पर निर्भर करती हैं।
(B) आयतचित्र (हिस्टोग्राम्स )
यह संतत वर्ग अंतरालों के लिए प्रयुक्त दंड आलेख की भाँति निरूपण का एक रूप है।
(C) बारंबारता बहुभुज (फ्रीक्वेंसी पॉलीगोन)
मात्रात्मक आंकड़ों (क्वांटिटेटिव डाटा ) और उनकी बारंबारताओं को निरूपित करने की एक अन्य विधि भी है। वह है एक बहुभुज (पॉलीगोन )।
आयतचित्र बनाए बिना ही बारंबारता बहुभुजों को स्वतंत्र रूप से भी बनाया जा सकता है। इसके लिए हमें आंकड़ों में प्रयुक्त वर्ग अंतरालों के मध्य बिन्दुओं की आवश्यकता होती है। वर्ग अंतरालों के इन मध्य-बिंदुओं को वर्ग - चिह्न (क्लास-मार्क्स ) कहा जाता है। किसी वर्ग अंतराल का वर्ग चिह्न ज्ञात करने के लिए, हम उस वर्ग अंतराल की उपरि सीमा (अप्पर लिमिट ) और निम्न सीमा (लोअर लिमिट ) का योग ज्ञात करते हैं और इस योग को 2 से भाग दे देते हैं।
इस तरह, वर्ग -चिह्न = (उपरि सीमा + निम्न सीमा)/2