त्रिकोणमितीय समीकरण: Difference between revisions
(added content) |
(added content) |
||
| Line 6: | Line 6: | ||
त्रिकोणमितीय समीकरण, बीजीय समीकरणों के समान होते हैं और ये [[रैखिक समीकरण]], द्विघात समीकरण या [[बहुपद]] समीकरण हो सकते हैं। त्रिकोणमितीय समीकरणों में, सामान्य बहुपद समीकरण की तरह, चरों के स्थान पर त्रिकोणमितीय अनुपात <math>sin\theta, cos\theta, tan\theta</math> को दर्शाया जाता है। त्रिकोणमितीय समीकरणों में उपयोग किए जाने वाले त्रिकोणमितीय अनुपात <math>sin\theta, cos\theta,</math> या <math>tan\theta</math> हैं। | त्रिकोणमितीय समीकरण, बीजीय समीकरणों के समान होते हैं और ये [[रैखिक समीकरण]], द्विघात समीकरण या [[बहुपद]] समीकरण हो सकते हैं। त्रिकोणमितीय समीकरणों में, सामान्य बहुपद समीकरण की तरह, चरों के स्थान पर त्रिकोणमितीय अनुपात <math>sin\theta, cos\theta, tan\theta</math> को दर्शाया जाता है। त्रिकोणमितीय समीकरणों में उपयोग किए जाने वाले त्रिकोणमितीय अनुपात <math>sin\theta, cos\theta,</math> या <math>tan\theta</math> हैं। | ||
रैखिक समीकरण <math>ax + b = 0</math> को त्रिकोणमितीय समीकरण के रूप में <math>aSin\theta + b = 0</math> के रूप में लिखा जा सकता है, जिसे कभी-कभी <math>Sin\theta = Sin\alpha</math> के रूप में भी लिखा जाता है। द्विघात समीकरण <math>ax^2 + bx + c = 0</math> त्रिकोणमितीय समीकरण का एक उदाहरण है जिसे <math>acos^2\theta + bcos\theta + c = 0</math> के रूप में लिखा जाता है। लेकिन चर की डिग्री के आधार पर समाधानों की संख्या वाले समीकरणों के सामान्य समाधानों के विपरीत, त्रिकोणमितीय समीकरणों में, <math>\theta</math> के विभिन्न मानों के लिए समाधान का एक ही मान मौजूद होता है। उदाहरण के लिए, हमारे पास <math>sin\theta = \frac{1}{2} = sin\frac{\pi}{6} = sin\frac{5\pi}{6} = sin\frac{13\pi}{6}</math> है, और इसी तरह साइन | रैखिक समीकरण <math>ax + b = 0</math> को त्रिकोणमितीय समीकरण के रूप में <math>aSin\theta + b = 0</math> के रूप में लिखा जा सकता है, जिसे कभी-कभी <math>Sin\theta = Sin\alpha</math> के रूप में भी लिखा जाता है। द्विघात समीकरण <math>ax^2 + bx + c = 0</math> त्रिकोणमितीय समीकरण का एक उदाहरण है जिसे <math>acos^2\theta + bcos\theta + c = 0</math> के रूप में लिखा जाता है। लेकिन चर की डिग्री के आधार पर समाधानों की संख्या वाले समीकरणों के सामान्य समाधानों के विपरीत, त्रिकोणमितीय समीकरणों में, <math>\theta</math> के विभिन्न मानों के लिए समाधान का एक ही मान मौजूद होता है। उदाहरण के लिए, हमारे पास <math>sin\theta = \frac{1}{2} = sin\frac{\pi}{6} = sin\frac{5\pi}{6} = sin\frac{13\pi}{6}</math> है, और इसी तरह साइन फलन के मान हर <math>2\pi</math> रेडियन के बाद दोहराए जाते हैं। | ||
त्रिकोणमितीय समीकरणों के कुछ उदाहरण इस प्रकार हैं। | त्रिकोणमितीय समीकरणों के कुछ उदाहरण इस प्रकार हैं। | ||
<math>sin2x-sin4x+sin6x = 0</math> | * <math>sin2x-sin4x+sin6x = 0</math> | ||
* <math>2cos^2x + 3sinx = 0</math> | |||
<math>2cos^2x + 3sinx = 0</math> | * <math>cos4x = cos2x</math> | ||
* <math>sin2x + cosx = 0</math> | |||
<math>cos4x = cos2x</math> | * <math>sec^22x = 1-tan2x</math> | ||
<math>sin2x + cosx = 0</math> | |||
<math>sec^22x = 1-tan2x</math> | |||
== त्रिकोणमितीय समीकरण सूत्र == | == त्रिकोणमितीय समीकरण सूत्र == | ||
| Line 76: | Line 72: | ||
== त्रिकोणमितीय समीकरणों को हल करने के चरण == | == त्रिकोणमितीय समीकरणों को हल करने के चरण == | ||
त्रिकोणमितीय समीकरण को हल करने के लिए निम्नलिखित चरणों का पालन किया जाना चाहिए। | |||
* दिए गए त्रिकोणमितीय समीकरण को एकल त्रिकोणमितीय अनुपात (साइन , कोस, टैन) वाले समीकरण में बदलें | |||
* दिए गए त्रिकोणमितीय समीकरण को एकल त्रिकोणमितीय अनुपात ( | |||
* त्रिकोणमितीय समीकरण, जिसमें कई कोण हों या उप-कोण हों, को सरल कोण में बदलें। | * त्रिकोणमितीय समीकरण, जिसमें कई कोण हों या उप-कोण हों, को सरल कोण में बदलें। | ||
* अब समीकरण को बहुपद समीकरण, द्विघात समीकरण या रैखिक समीकरण के रूप में निरूपित करें। | * अब समीकरण को बहुपद समीकरण, द्विघात समीकरण या रैखिक समीकरण के रूप में निरूपित करें। | ||
| Line 86: | Line 81: | ||
== महत्वपूर्ण टिप्पणियाँ: == | == महत्वपूर्ण टिप्पणियाँ: == | ||
* किसी भी वास्तविक संख्या x और y के लिए, sin x = sin y का तात्पर्य x = | * किसी भी वास्तविक संख्या <math>x</math> और <math>y</math> के लिए, <math>sin x = sin y</math> का तात्पर्य<math>x = n\pi + (-1)ny</math> है, जहाँ <math>n\in Z</math> है। | ||
* किसी भी वास्तविक संख्या x और y के लिए, cos x = cos y का तात्पर्य x = | * किसी भी वास्तविक संख्या <math>x</math> और <math>y</math> के लिए, <math>cos x = cos y</math> का तात्पर्य <math>x = 2n\pi \pm y </math> है, जहाँ <math>n\in Z</math> है। | ||
* यदि x और y, | * यदि <math>x</math> और <math>y</math>, <math>\frac{\pi}{2}</math> के विषम गुणज नहीं हैं, तो <math>tan x = tan y</math> का तात्पर्य <math>x = n\pi + y</math> है, जहाँ <math>n\in Z</math> है। | ||
* sin A = 0 का तात्पर्य A = | * <math>sin A = 0</math> का तात्पर्य <math>A = n\pi</math> है और <math>cos A = 0</math> का तात्पर्य <math>A = (2n + 1)\frac{\pi}{2}</math> है, जहाँ <math>n\in Z</math> है | ||
[[Category:त्रिकोणमितीय फलन]][[Category:कक्षा-11]][[Category:गणित]] | [[Category:त्रिकोणमितीय फलन]][[Category:कक्षा-11]][[Category:गणित]] | ||
Revision as of 14:52, 14 November 2024
त्रिकोणमितीय समीकरणों में चर के रूप में कोणों के त्रिकोणमितीय फलन उपस्थित होते हैं। त्रिकोणमितीय समीकरणों में कोण त्रिकोणमितीय फलनों जैसे कि का उपयोग चर के रूप में किया जाता है। सामान्य बहुपद समीकरणों के समान, त्रिकोणमितीय समीकरणों के भी हल होते हैं, जिन्हें मुख्य समाधान और सामान्य समाधान कहा जाता है।
हम इस तथ्य का उपयोग करेंगे कि और की अवधि है और की अवधि है, ताकि त्रिकोणमितीय समीकरणों के हल मिल सकें। आइए हम त्रिकोणमितीय समीकरणों, उन्हें हल करने की विधि और अवधारणा की बेहतर समझ के लिए त्रिकोणमितीय समीकरणों के कुछ हल किए गए उदाहरणों की सहायता से उनके समाधान ज्ञात करने के बारे में अधिक जानें।
परिभाषा
त्रिकोणमितीय समीकरण, बीजीय समीकरणों के समान होते हैं और ये रैखिक समीकरण, द्विघात समीकरण या बहुपद समीकरण हो सकते हैं। त्रिकोणमितीय समीकरणों में, सामान्य बहुपद समीकरण की तरह, चरों के स्थान पर त्रिकोणमितीय अनुपात को दर्शाया जाता है। त्रिकोणमितीय समीकरणों में उपयोग किए जाने वाले त्रिकोणमितीय अनुपात या हैं।
रैखिक समीकरण को त्रिकोणमितीय समीकरण के रूप में के रूप में लिखा जा सकता है, जिसे कभी-कभी के रूप में भी लिखा जाता है। द्विघात समीकरण त्रिकोणमितीय समीकरण का एक उदाहरण है जिसे के रूप में लिखा जाता है। लेकिन चर की डिग्री के आधार पर समाधानों की संख्या वाले समीकरणों के सामान्य समाधानों के विपरीत, त्रिकोणमितीय समीकरणों में, के विभिन्न मानों के लिए समाधान का एक ही मान मौजूद होता है। उदाहरण के लिए, हमारे पास है, और इसी तरह साइन फलन के मान हर रेडियन के बाद दोहराए जाते हैं।
त्रिकोणमितीय समीकरणों के कुछ उदाहरण इस प्रकार हैं।
त्रिकोणमितीय समीकरण सूत्र
हम अन्य त्रिकोणमितीय समीकरणों को हल करने के लिए मूल त्रिकोणमितीय समीकरणों के कुछ परिणामों और सामान्य समाधानों का उपयोग करते हैं। ये परिणाम इस प्रकार हैं:
किसी भी वास्तविक संख्या x और y के लिए, sin x = sin y का अर्थ है x = nπ + (-1)ny, जहाँ n ∈ Z.
किसी भी वास्तविक संख्या x और y के लिए, cos x = cos y का अर्थ है x = 2nπ ± y, जहाँ n ∈ Z.
यदि x और y, π/2 के विषम गुणज नहीं हैं, तो tan x = tan y का अर्थ है x = nπ + y, जहाँ n ∈ Z.
अब, हम त्रिकोणमितीय सूत्रों का उपयोग करके इन परिणामों को सिद्ध कर सकते हैं। सिद्ध करें कि किसी भी वास्तविक संख्या x और y के लिए, sin x = sin y का तात्पर्य x = nπ + (-1)ny है, जहाँ n ∈ Z है
प्रमाण: यदि sin x = sin y है, तो sin x – sin y = 0
⇒ 2 cos (x + y)/2 sin (x − y)/2 = 0 --- [सूत्र Sin A - Sin B = 2 cos ½ (A + B) sin ½ (A - B) का उपयोग करके]
⇒ cos (x + y)/2 = 0 या sin (x − y)/2 = 0
⇒ (x + y)/2 = (2n + 1)π /2 या (x − y)/2 = nπ, जहाँ n ∈ Z ---- [क्योंकि sin A = 0 का तात्पर्य A = nπ है और cos A = 0 का तात्पर्य A = (2n + 1)π/2, जहाँ n ∈ Z]
अर्थात x = (2n + 1) π – y या x = 2nπ + y, जहाँ n ∈ Z.
अतः x = (2n + 1)π + (–1)2n + 1y या x = 2nπ + (–1)2n y, जहाँ n ∈ Z.
इन दोनों परिणामों को संयोजित करने पर, हमें x = nπ + (–1)ny प्राप्त होता है, जहाँ n ∈ Z.
सिद्ध करें कि किसी भी वास्तविक संख्या x और y के लिए, cos x = cos y का अर्थ है x = 2nπ ± y, जहाँ n ∈ Z.
प्रमाण: यदि cos x = cos y, तो cos x – cos y = 0
⇒ -2 sin (x + y)/2 sin (x − y)/2 = 0 --- [उपयोग करके सूत्र Cos A - Cos B = - 2 sin ½ (A + B) sin ½ (A - B)]
⇒ sin (x + y)/2 = 0 या sin (x − y)/2 = 0
⇒ (x + y)/2 = nπ या (x − y)/2 = nπ, जहाँ n ∈ Z ---- [क्योंकि sin A = 0 का अर्थ है A = nπ, जहाँ n ∈ Z]
अर्थात x = 2nπ – y या x = 2nπ + y, जहाँ n ∈ Z.
इसलिए x = 2nπ ± y, जहाँ n ∈ Z.
सिद्ध करें कि यदि x और y, π/2 के विषम गुणज नहीं हैं, तो tan x = tan y का अर्थ है x = nπ + y, जहाँ n ∈ Z.
उपाय: यदि tan x = tan y, फिर tan x - tan y = 0
⇒ पाप x / cos x - पाप y / cos y = 0
⇒ (sin x cos y - cos x syn y) / (cos x cos y) = 0
⇒ पाप (x - y) / (cos x cos y) = 0 ---- [त्रिकोणमितीय सूत्र का उपयोग करके पाप (ए - बी) = पाप A cosB - पाप B cosA]
⇒ पाप (x - y) = 0
⇒ x - y = nπ, जहां n ∈ Z --- [क्योंकि पाप A = 0 का अर्थ है A = nπ, जहां n ∈ Z]
⇒ x = nπ + y, जहां n ∈ Z
त्रिकोणमितीय समीकरणों को हल करने के चरण
त्रिकोणमितीय समीकरण को हल करने के लिए निम्नलिखित चरणों का पालन किया जाना चाहिए।
- दिए गए त्रिकोणमितीय समीकरण को एकल त्रिकोणमितीय अनुपात (साइन , कोस, टैन) वाले समीकरण में बदलें
- त्रिकोणमितीय समीकरण, जिसमें कई कोण हों या उप-कोण हों, को सरल कोण में बदलें।
- अब समीकरण को बहुपद समीकरण, द्विघात समीकरण या रैखिक समीकरण के रूप में निरूपित करें।
- सामान्य समीकरणों के समान त्रिकोणमितीय समीकरण को हल करें और त्रिकोणमितीय अनुपात का मान ज्ञात करें।
- त्रिकोणमितीय अनुपात का कोण या त्रिकोणमितीय अनुपात का मान त्रिकोणमितीय समीकरण के हल को दर्शाता है।
महत्वपूर्ण टिप्पणियाँ:
- किसी भी वास्तविक संख्या और के लिए, का तात्पर्य है, जहाँ है।
- किसी भी वास्तविक संख्या और के लिए, का तात्पर्य है, जहाँ है।
- यदि और , के विषम गुणज नहीं हैं, तो का तात्पर्य है, जहाँ है।
- का तात्पर्य है और का तात्पर्य है, जहाँ है