विशेष अनुक्रमों के n पदों का योगफल: Difference between revisions

From Vidyalayawiki

(formulas)
(formulas)
Line 155: Line 155:
<math>(n + 1)^4-1^4 = 4(1^3 + 2^3 + 3^3 +...+ n^3) + 6(1^2 + 2^2 + 3^2 +...+ n^2) + 4(1 + 2 + 3 +...+ n) + n</math>
<math>(n + 1)^4-1^4 = 4(1^3 + 2^3 + 3^3 +...+ n^3) + 6(1^2 + 2^2 + 3^2 +...+ n^2) + 4(1 + 2 + 3 +...+ n) + n</math>


<math>n^4+4n^3+6n^2+4n+1-1=4\textstyle \sum_{k=1}^n \displaystyle k^3+6\textstyle \sum_{k=1}^n \displaystyle k^2+4\textstyle \sum_{k=1}^n \displaystyle k+n</math>


हम जानते हैं कि,


हम जानते हैं कि,
<math>\textstyle \sum_{k=1}^n \displaystyle k=\frac{n(n+1)}{2}</math>


और
और
<math>\textstyle \sum_{k=1}^n \displaystyle k^2=\frac{n(n+1)(2n+1)}{6}</math>


इस प्रकार,
इस प्रकार,

Revision as of 09:34, 19 November 2024

गणित में, हम विभिन्न प्रकार की श्रेणीयों जैसे समांतर श्रेणी, गुणोत्तर श्रेणी, हरात्मक(हार्मोनिक) श्रेणी आदि पर प्रभाव डाल सकते हैं। इनके अतिरिक्त , हम कुछ विशेष श्रेणीयों को देख सकते हैं जिनके लिए हम विभिन्न तकनीकों का उपयोग करके पदों का योग ज्ञात कर सकते हैं। इस लेख में, आप तीन सबसे अधिक उपयोग की जाने वाली विशेष श्रेणीयाँ और पदों तक इन श्रेणीयों का योग ज्ञात करने के लिए सूत्रों की व्युत्पत्ति के साथ-साथ हल किए गए उदाहरण के बारे में जानेंगे।

विशेष श्रेणी के n पदों का योग

कुछ विशेष श्रेणियाँ नीचे दी गई हैं:

(i) (प्रथम प्राकृतिक संख्याओं का योग)

(ii) (प्रथम प्राकृतिक संख्याओं के वर्गों का योग)

(iii) (प्रथम प्राकृतिक संख्याओं के घनों का योग)

आइए यहाँ उल्लिखित विशेष श्रेणी के पदों तक का योग एक-एक करके ज्ञात करें।

प्रथम n प्राकृतिक संख्याओं का योग

प्राकृतिक संख्याएँ हैं:

इन प्राकृतिक संख्याओं का योग इस प्रकार लिखा जा सकता है:

यह एक AP है जिसका प्रथम पद और सार्व अंतर है।

अर्थात और

AP के प्रथम पदों का योग

अब,

और रखने पर,

इसलिए, प्रथम प्राकृतिक संख्याओं का योग

प्रथम n प्राकृतिक संख्याओं के वर्गों का योग

प्राकृतिक संख्याओं के वर्ग हैं:

या

हम पदों के योग को इस प्रकार व्यक्त कर सकते हैं:

यह न तो AP है और न ही GP क्योंकि या तो दो क्रमागत संख्याओं के बीच का अंतर स्थिर नहीं है या दो क्रमागत संख्याओं का अनुपात स्थिर है।

आइए नीचे दिए गए व्यंजक पर विचार करके इस श्रृंखला का योग ज्ञात करें:

प्रतिस्थापित करने पर,

प्रतिस्थापित करने पर,

प्रतिस्थापित करने पर,

प्रतिस्थापित करने पर,

प्रतिस्थापित करने पर,

अब, इन समीकरणों के दोनों पक्षों को एक साथ जोड़ने पर, हमें प्राप्त होता है;

यहाँ,

पहली प्राकृतिक संख्याओं का योग दर्शाता है और के बराबर है।

इसलिए,

पदों को पुनर्व्यवस्थित करने पर,

इसलिए, पहले प्राकृतिक संख्याओं के वर्गों का योग

प्रथम n प्राकृतिक संख्याओं के घनों का योग

प्राकृतिक संख्याओं के वर्ग हैं:

या

हम पदों के योग को इस प्रकार व्यक्त कर सकते हैं:

यह न तो AP है और न ही GP क्योंकि या तो दो क्रमागत संख्याओं के बीच का अंतर स्थिर नहीं है या दो क्रमागत संख्याओं का अनुपात स्थिर है।

आइए नीचे दिए गए व्यंजक पर विचार करके इस श्रेणी का योग ज्ञात करें:

प्रतिस्थापित करने पर

इन समीकरणों के दोनों पक्षों को जोड़ने पर, हमें प्राप्त होता है;

हम जानते हैं कि,

और

इस प्रकार,

पदों को पुनर्व्यवस्थित करके,

= (1/4) [n4 + 4n3 + 6n2 + 4n – 2n3 – 3n2 – n – 2n2 – 2n – n]

= (1/4) [n4 + 2n3 + n2]

= (1/4)[n2(n2 + 2n + 1)]

= (1/4)[n2(n + 1)2]

इसलिए, पहली प्राकृतिक संख्याओं के घनों का योग = [एन(एन + 1)]2/4