रेखा के समीकरणों के विविध रूप: Difference between revisions

From Vidyalayawiki

No edit summary
(added internal links)
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
इस लेख में हम एक रेखा के समीकरण के विविध रूपों पर चर्चा करने जा रहे हैं। एक निर्देशांक तल में अनंत संख्या में बिंदु होते हैं। यदि हम <math>2d</math> तल में एक बिंदु <math>P(x,y)</math> और इसे <math>N</math> नामक एक रेखा मानते हैं। तब हम यह निर्धारित करेंगे कि जिस बिंदु पर हम विचार कर रहे हैं वह रेखा <math>L</math> पर स्थित है या यह रेखा के ऊपर या नीचे स्थित है। इस परिदृश्य में सरल रेखा तब काम आती है। यहाँ हम विभिन्न रूपों में एक रेखा के समीकरण से संबंधित महत्वपूर्ण विषय को उपस्थित करेंगे।
इस लेख में हम एक [[रेखाएँ और कोण - परिभाषाएँ|रेखा के समीकरण]] के विविध रूपों पर चर्चा करने जा रहे हैं। एक [[निर्देशांक तल]] में अनंत संख्या में बिंदु होते हैं। यदि हम <math>2d</math> तल में एक बिंदु <math>P(x,y)</math> और इसे <math>N</math> नामक एक रेखा मानते हैं। तब हम यह निर्धारित करेंगे कि जिस बिंदु पर हम विचार कर रहे हैं वह रेखा <math>L</math> पर स्थित है या यह रेखा के ऊपर या नीचे स्थित है। इस परिदृश्य में सरल रेखा तब काम आती है। यहाँ हम विभिन्न रूपों में एक रेखा के समीकरण से संबंधित महत्वपूर्ण विषय को उपस्थित करेंगे।


== सरल रेखा के समीकरण के विविध रूप ==
== सरल रेखा के समीकरण के विविध रूप ==


=== A. y-अक्ष के समांतर रेखा का समीकरण ===
=== y-अक्ष के समांतर रेखा का समीकरण ===
एक सरल रेखा का समीकरण जो <math>y</math>-अक्ष के समांतर ‘<math>a</math>’ की दूरी पर है, तो <math>y</math>-अक्ष का समीकरण <math>x=a</math> होगा (यहाँ ‘<math>a</math>’ समतल में निर्देशांक है)।
एक [[सरल रेखा में गति|सरल रेखा]] का समीकरण जो <math>y</math>-अक्ष के समांतर ‘<math>a</math>’ की दूरी पर है, तो <math>y</math>-अक्ष का समीकरण <math>x=a</math> होगा (यहाँ ‘<math>a</math>’ समतल में निर्देशांक है)।


इस उदाहरण पर विचार करें निर्देशांक <math>(7,8)</math> के लिए <math>y</math>-अक्ष के समांतर रेखा का समीकरण <math>x=8</math> है
इस उदाहरण पर विचार करें निर्देशांक <math>(7,8)</math> के लिए <math>y</math>-अक्ष के समांतर रेखा का समीकरण <math>x=8</math> है


=== B. x-अक्ष के समांतर रेखा का समीकरण ===
=== x-अक्ष के समांतर रेखा का समीकरण ===
सरल रेखा का समीकरण यदि सरल रेखा <math>x</math>-अक्ष के समांतर है, तो समीकरण <math>y=a</math> होगा जहाँ ‘<math>a</math>’ एक मनमाना स्थिरांक है।
सरल रेखा का समीकरण यदि सरल रेखा <math>x</math>-अक्ष के समांतर है, तो समीकरण <math>y=a</math> होगा जहाँ ‘<math>a</math>’ एक मनमाना स्थिरांक है।


समझने के लिए कोई इस उदाहरण पर विचार कर सकता है, इसे एक बिंदु <math>(9,10)</math> पर विचार करें <math>x</math>-अक्ष के समांतर रेखा का समीकरण <math>x=9</math> है
समझने के लिए कोई इस उदाहरण पर विचार कर सकता है, इसे एक बिंदु <math>(9,10)</math> पर विचार करें <math>x</math>-अक्ष के समांतर रेखा का समीकरण <math>x=9</math> है


=== C. समीकरण का बिंदु-ढलान रूप ===
=== समीकरण का बिंदु-ढलान रूप ===
मान लीजिए कि किसी विशेष बिंदु <math>Q(X_1, Y_1)</math> और <math>P(X, Y)</math>से होकर गुजरने वाली रेखा उल्लिखित रेखा में मौजूद कोई भी बिंदु है।
मान लीजिए कि किसी विशेष बिंदु <math>Q(X_1, Y_1)</math> और <math>P(X, Y)</math>से होकर गुजरने वाली रेखा उल्लिखित रेखा में मौजूद कोई भी बिंदु है।


Line 24: Line 24:
तुलना करने पर <math>Y-Y_1 = m(X-X_1)</math> रेखा का आवश्यक बिंदु-ढलान रूप समीकरण है
तुलना करने पर <math>Y-Y_1 = m(X-X_1)</math> रेखा का आवश्यक बिंदु-ढलान रूप समीकरण है


=== D. दो-बिंदु रूप में रेखा का समीकरण ===
=== दो-बिंदु रूप में रेखा का समीकरण ===
रेखा <math>L</math> में मौजूद एक मनमाना स्थिरांक <math>P(x,y)</math> पर विचार करें और रेखा <math>L</math> दो बिंदुओं <math>A(x_1,y_1)</math>और <math>B(x_2,y_2)</math>से होकर गुजरती है। हम ‘<math>m</math>’ को रेखा <math>L</math> का ढलान मानते हैं।
रेखा <math>L</math> में मौजूद एक मनमाना स्थिरांक <math>P(x,y)</math> पर विचार करें और रेखा <math>L</math> दो बिंदुओं <math>A(x_1,y_1)</math>और <math>B(x_2,y_2)</math>से होकर गुजरती है। हम ‘<math>m</math>’ को रेखा <math>L</math> का [[रेखा की ढाल|ढलान]] मानते हैं।


<math>m=  \frac{y_2-y_1 }{x_2-x_1}</math>
<math>m=  \frac{y_2-y_1 }{x_2-x_1}</math>
Line 39: Line 39:
दो बिंदु रूप में आवश्यक रेखा का समीकरण है <math>y-y_1=\frac{y_2- y_1}{x_2-x_1}(x-x_1)</math> ।
दो बिंदु रूप में आवश्यक रेखा का समीकरण है <math>y-y_1=\frac{y_2- y_1}{x_2-x_1}(x-x_1)</math> ।


=== E. अंत: खंड रूप में रेखा का समीकरण ===
=== अंत: खंड रूप में रेखा का समीकरण ===
मान लीजिए <math>AB</math> रेखा <math>x</math>-अक्ष पर <math>(a, 0)</math> तथा <math>y</math>-अक्ष पर<math>(0, b)</math> पर अंतःखंड काटती है
मान लीजिए <math>AB</math> रेखा <math>x</math>-अक्ष पर <math>(a, 0)</math> तथा <math>y</math>-अक्ष पर<math>(0, b)</math> पर अंतःखंड काटती है


Line 50: Line 50:
<math>\delta \frac{x}{a} +\frac{y}{b} = 1</math> अंतःखंड रूप में रेखा का अपेक्षित समीकरण है
<math>\delta \frac{x}{a} +\frac{y}{b} = 1</math> अंतःखंड रूप में रेखा का अपेक्षित समीकरण है


=== उदाहरण: ===
'''उदाहरण'''
 
एक रेखा का समीकरण ज्ञात करने पर विचार करें जिसने <math>x</math>-अक्ष पर <math>4</math> का अवरोध बनाया है और ग्राफ में <math>y</math>-अक्ष का एक कट बनाया है
एक रेखा का समीकरण ज्ञात करने पर विचार करें जिसने <math>x</math>-अक्ष पर <math>4</math> का अवरोध बनाया है और ग्राफ में <math>y</math>-अक्ष का एक कट बनाया है


Line 84: Line 85:


<math>\delta x+y+4=0</math>
<math>\delta x+y+4=0</math>
== उदाहरण ==
1) बिंदु <math>(-4, -3)</math> से होकर गुजरने वाली तथा <math>x</math>-अक्ष के समांतर रेखा का समीकरण ज्ञात कीजिए।
'''समाधान'''
यहाँ, <math>m = 0, X_1 = -4, Y_1 = -3</math>
उपर्युक्त समीकरण के माध्यम से: <math>Y + 3 = 0(X + 4)</math>
<math>\delta Y=-3
</math> अपेक्षित समीकरण है।
2) बिन्दुओं (4,-2) और (-1,3) से जुड़ने वाली रेखा का समीकरण ज्ञात कीजिए।
'''समाधान''': यहाँ दिए गए दो बिन्दु <math>(X_1,Y_1) = (-1,3)
</math> और <math>(X_2,Y_2) = (4,-2)
</math> हैं।
दो बिन्दु रूप में रेखा का समीकरण है
<math>\delta y-3 = \Bigl(\frac{3-(-2)}{-1-4}\Bigr)(x+1)
</math>
<math>\delta -x-1=y-3</math>
<math>\delta x+y-2=0</math> ।
[[Category:सरल रेखाएं]][[Category:कक्षा-11]][[Category:गणित]]
[[Category:सरल रेखाएं]][[Category:कक्षा-11]][[Category:गणित]]

Latest revision as of 10:47, 20 November 2024

इस लेख में हम एक रेखा के समीकरण के विविध रूपों पर चर्चा करने जा रहे हैं। एक निर्देशांक तल में अनंत संख्या में बिंदु होते हैं। यदि हम तल में एक बिंदु और इसे नामक एक रेखा मानते हैं। तब हम यह निर्धारित करेंगे कि जिस बिंदु पर हम विचार कर रहे हैं वह रेखा पर स्थित है या यह रेखा के ऊपर या नीचे स्थित है। इस परिदृश्य में सरल रेखा तब काम आती है। यहाँ हम विभिन्न रूपों में एक रेखा के समीकरण से संबंधित महत्वपूर्ण विषय को उपस्थित करेंगे।

सरल रेखा के समीकरण के विविध रूप

y-अक्ष के समांतर रेखा का समीकरण

एक सरल रेखा का समीकरण जो -अक्ष के समांतर ‘’ की दूरी पर है, तो -अक्ष का समीकरण होगा (यहाँ ‘’ समतल में निर्देशांक है)।

इस उदाहरण पर विचार करें निर्देशांक के लिए -अक्ष के समांतर रेखा का समीकरण है

x-अक्ष के समांतर रेखा का समीकरण

सरल रेखा का समीकरण यदि सरल रेखा -अक्ष के समांतर है, तो समीकरण होगा जहाँ ‘’ एक मनमाना स्थिरांक है।

समझने के लिए कोई इस उदाहरण पर विचार कर सकता है, इसे एक बिंदु पर विचार करें -अक्ष के समांतर रेखा का समीकरण है

समीकरण का बिंदु-ढलान रूप

मान लीजिए कि किसी विशेष बिंदु और से होकर गुजरने वाली रेखा उल्लिखित रेखा में मौजूद कोई भी बिंदु है।

रेखा का ढलान

और परिभाषा के अनुसार ढलान है,

इसलिए,

तुलना करने पर रेखा का आवश्यक बिंदु-ढलान रूप समीकरण है

दो-बिंदु रूप में रेखा का समीकरण

रेखा में मौजूद एक मनमाना स्थिरांक पर विचार करें और रेखा दो बिंदुओं और से होकर गुजरती है। हम ‘’ को रेखा का ढलान मानते हैं।

फिर रेखा का समीकरण है

का मान प्रतिस्थापित करने पर हमें मिलता है

दो बिंदु रूप में आवश्यक रेखा का समीकरण है

अंत: खंड रूप में रेखा का समीकरण

मान लीजिए रेखा -अक्ष पर तथा -अक्ष पर पर अंतःखंड काटती है

दो-बिंदु रूप से:

अंतःखंड रूप में रेखा का अपेक्षित समीकरण है

उदाहरण

एक रेखा का समीकरण ज्ञात करने पर विचार करें जिसने -अक्ष पर का अवरोध बनाया है और ग्राफ में -अक्ष का एक कट बनाया है

समाधान

तो,और

इसलिए अवरोध रूप में एक रेखा का आवश्यक समीकरण

रेखा का ढलान-अंत: खंड रूप:

एक रेखा पर विचार करें जिसका ढलान है जो -अक्ष पर ‘’ की दूरी पर एक अंत: खंड काटती है। इसलिए बिंदु है

इसलिए, आवश्यक समीकरण है:

जो एक रेखा का आवश्यक समीकरण है।

उदाहरण:

एक रेखा का समीकरण ज्ञात करें जिसका ढलान है और -अक्ष के धनात्मक भाग में इकाइयों का अंत: खंड है।

समाधान

यहाँ, और

में यह मान प्रतिस्थापित करने पर हमें प्राप्त होता है:

उदाहरण

1) बिंदु से होकर गुजरने वाली तथा -अक्ष के समांतर रेखा का समीकरण ज्ञात कीजिए।

समाधान

यहाँ,

उपर्युक्त समीकरण के माध्यम से:

अपेक्षित समीकरण है।


2) बिन्दुओं (4,-2) और (-1,3) से जुड़ने वाली रेखा का समीकरण ज्ञात कीजिए।

समाधान: यहाँ दिए गए दो बिन्दु और हैं।

दो बिन्दु रूप में रेखा का समीकरण है