फलन: Difference between revisions

From Vidyalayawiki

(added content)
(added the category)
 
(11 intermediate revisions by the same user not shown)
Line 1: Line 1:
2.4 फलन (Function)
== परिचय ==
इस अनुच्छेद में, हम एक विशेष प्रकार के [[संबंध]] का अध्ययन करेंगे, जिसे '''फलन''' कहते हैं। हम फलन को एक नियम के रूप में देख सकते हैं, जिससे कुछ दिए हुए अवयवों से नए अवयव उत्पन्न होते हैं। फलन को सूचित करने के लिए अनेक पद प्रयुक्त किए जाते हैं, जैसे 'प्रतिचित्र' अथवा 'प्रतिचित्रण' 


इस अनुच्छेद में, हम एक विशेष प्रकार के संबंध का अध्ययन करेंगे, जिसे फलन कहते हैं। हम फलन को एक नियम के रूप में देख सकते हैं, जिससे कुछ दिए हुए अवयवों से नए अवयव उत्पन्न होते हैं। फलन को सूचित करने के लिए अनेक पद प्रयुक्त किए जाते हैं, जैसे 'प्रतिचित्र' अथवा 'प्रतिचित्रण' परिभाषा 5 एक समुच्चय A से समुच्चय B का संबंध, एक फलन कहलाता है, यदि समुच्चय A के प्रत्येक अवयव का समुच्चय B में एक और केवल एक प्रतिबिंब होता है।  
== परिभाषा-1 ==
एक समुच्चय <math>A</math> से [[समुच्चय और उनका निरूपण|समुच्चय]] <math>B</math> का संबंध, एक फलन कहलाता है, यदि समुच्चय <math>A</math> के प्रत्येक अवयव का समुच्चय <math>B</math> में एक और केवल एक प्रतिबिंब होता है।  


है इस प्रकार  
दूसरे शब्दों में, फलन <math>f</math>, किसी अरिक्त समुच्चय <math>A</math> से एक अरिक्त समुच्चय <math>B</math> का है , इस प्रकार का संबंध कि <math>f</math> का प्रांत <math>A</math> है तथा <math>f</math> के किसी भी दो भिन्न क्रमित युग्मों के प्रथम घटक समान नहीं हैं। 


दूसरे शब्दों में, फलन, किसी अरिक्त समुच्चय A से एक अरिक्त समुच्चय B का का संबंध किf का प्रांत A है तथा के किसी भी दो भिन्न क्रमित युग्मों के प्रथम घटक समान
यदि <math>f</math>, <math>A</math> से <math>B</math> का एक फलन है तथा <math>(a,b)\in f</math>, तो <math>f (a) = b</math>, जहाँ <math>b</math> को <math>f</math> के अंतर्गत <math>a</math> का प्रतििबम्ब तथा a को <math>b</math> का 'पूर्व प्रतिबिंब' कहते हैं।


नहीं हैं।  
<math>A</math> से <math>B</math> के फलन <math>f</math> को प्रतीकात्मक रूप में <math>f:A\rightarrow B</math> से निरूपित करते हैं।  


यदि f, A से B का एक फलन है तथा (a, b) e f, तो f (a) = b, जहाँ b को f के अंतर्गत a का प्रतििबम्ब तथा a को b का 'पूर्व प्रतिबिंब' कहते हैं।  
नीचे दिए उदाहरणों में बहुत से संबंधों पर विचार करेंगे, जिनमें से कुछ फलन हैं और दूसरे फलन नहीं हैं।  


A से B के फलन को प्रतीकात्मक रूप में f AB से निरूपित करते हैं।
'''उदाहरण 1:''' मान लेते हैं  कि <math>N</math> प्राकृत संख्याओं का समुच्चय है और <math>N</math> पर परिभाषित एक संबंध <math>R</math> इस प्रकार है कि <math>R=\{(x,y):y=2x,x,y\in N\}</math>।


पिछले उदाहरणों पर ध्यान देने से हम सरलता से देखते हैं कि उदाहरण 7 में दिया संबंध एक फलन नहीं है, कयोंकि अवयव 6 का कोई प्रतिबिंब नहीं है।
<math>R</math> के प्रांत, सहप्रांत तथा परिसर क्या हैं? क्या यह संबंध, एक फलन है हम यह ज्ञात करने का प्रयास करेंगे। 


पुन: उदाहरण 8 में दिया संबंध एक फलन नहीं है क्योंकि इसके प्रांत के कुछ अवयवों के एक से अधिक प्रतिबिंब हैं। उदहारण 9 भी फलन नहीं है ( क्यों ? ) नीचे दिए उदाहरणों में बहुत से संबंधों पर विचार करेंगे, जिनमें से कुछ फलन हैं और दूसरे फलन नहीं हैं।
'''हल''' <math>R</math> का प्रांत, [[प्राकृत संख्याएँ|प्राकृत संख्याओं]] का समुच्चय <math>N</math> है । इसका सहप्रांत भी <math>N</math> है। इसका परिसर सम प्राकृत संख्याओं का समुच्चय है।


परिभाषा 6 एक ऐसे फलन को जिसका परिसर वास्तविक संख्याओं का समुच्चय या उसका कोई उपसमुच्चय हो, वास्तविक मान फलन कहते हैं। यदि वास्तविक चर वाले किसी वास्तविक मान फलन का प्रांत भी वास्तविक संख्याओं का समुच्चय अथवा उसका कोई उपसमुच्चय हो तो इसे वास्तविक फलन भी कहते हैं।
क्योंकि प्रत्येक प्राकृत संख्या ”<math>n</math>" का एक और केवल एक ही प्रतिबिंब है, इसलिए यह संबंध एक फलन है।


उदाहरण 12 मान लीजिए कि N वास्तविक संख्याओं का समुच्चय है।
== परिभाषा-2 ==
एक ऐसे फलन को जिसका परिसर वास्तविक संख्याओं का समुच्चय या उसका कोई उपसमुच्चय हो, '''वास्तविक मान फलन''' कहते हैं। यदि वास्तविक चर वाले किसी वास्तविक मान फलन का प्रांत भी वास्तविक संख्याओं का समुच्चय अथवा उसका कोई उपसमुच्चय हो तो इसे '''वास्तविक फलन''' भी कहते हैं।


N→ N,  
'''उदाहरण 2''':  मान लीजिए कि <math>N</math> वास्तविक संख्याओं का समुच्चय है। <math>f:N\rightarrow N</math>, <math>f(x)=2x+2</math>, द्वारा परिभाषित एक वास्तविक मान फलन है। इस परिभाषा का प्रयोग करके, नीचे दी गई सारणी को पूर्ण करने के बाद परिणाम स्वरूप निम्न प्रस्तुत सारणी में देखते हैं।


f (x) = 2x + 1, द्वारा परिभाषित एक वास्तविक मान फलन है। इस परिभाषा का प्रयोग करके, नीचे दी गई सारणी को पूर्ण कीजिए ।
'''हल''' पूर्ण की हुई सारणी नीचे दी गई है:  
 
{| class="wikitable"
X
|+
 
!<math>x</math>
1
!<math>1</math>
 
!<math>2</math>
2
!<math>3</math>
 
!<math>4</math>
3
!<math>5</math>
 
!6
5
!7
 
|-
y | f (1) = ... | f (2) = ... f (3) = ... |f (4) = ... | f (5) =
|<math>y</math>
 
|<math>f(1)=4</math>
हल पूर्ण की हुई सारणी नीचे दी गई है:  
|<math>f(1)=6</math>
 
|<math>f(3)=8</math>
X
|<math>f(4)=10</math>
 
|<math>f(5)=12</math>
ہے
|<math>f(6)=14</math>
 
|<math>f(7)=16</math>
1  
|}
 
[[Category:संबंध और फलन]]
2  
[[Category:गणित]]
 
[[Category:कक्षा-11]]
3  
 
5  
 
6  
 
7
 
|f (6) = ... |f (7) = ...
 
6  
 
7
 
f (1) = 3 | f (2) = 5 | f (3) = 7 | f (4) = 9 f (5) = 11 f (6) = 13 | f (7) =15
 
RR है। इस
 
(i) तत्समक फलन (Identity function) मान लीजिए R वास्तविक संख्याओं का समुच्चय है। y = f(x), प्रत्येक x E R द्वारा परिभाषित वास्तविक मान फलन प्रकार के फलन को तत्समक फलन कहते हैं। यहाँ पर ∫ के प्रांत तथा परिसर R हैं। इसका आलेख एक सरल रेखा होता है ( आकृति 2.8 ) । यह रेखा मूल बिंदु से हो कर जाती है।
 
X'
 
(ii) अचर फलन (Constant function ) y = f (x) = c जहाँ c एक अचर है और प्रत्येक
 
x∈ R द्वारा परिभाषित एक वास्तविक मान फलन : RR है। यहाँ पर ∫ का प्रांत R है और उसका
 
f
 
परिसर {c} है। f का आलेख - अक्ष के समांतर एक रेखा है, उदाहरण के लिए यदि f(x)=3 प्रत्येक XER है, तो इसका आलेख आकृति 2.9 में दर्शाई रेखा है।
 
Y
 
iii) बहुपद फलन या बहुपदीय फलन (Polynomial function ) फलन : RR, एक बहुपदीय फलन कहलाता है, यदि R के प्रत्येक x के लिए, y = f(x)=a+ax+at + ...+ a, x", जहाँ ” एक ऋणेतर पूर्णांक है तथा aayaa,ER.
 
n
 
f(x) = x' - x + 2, और g(x) = x + √2.x, द्वारा परिभाषित फलन एक बहुपदीय फलन है जब कि
 
h(x) = x3 + 2x द्वारा परिभाषित फलन h, बहुपदीय फलन नहीं है। ( क्यों ? )
 
(iv) परिमेय फलन ( Rational functions)
 
f(x) के प्रकार के फलन जहाँ f(x) तथा g(x) g(x)
 
एक प्रांत में, x के परिभाषित बहुपदीय फलन हैं, जिसमें g(x) ≠ 0 परिमेय फलन कहलाते हैं।
 
उदाहरण 15 एक वास्तविक मान फलन / R 0}R की परिभाषा f (x) =
 
-
 
,
 
X
 
xER - (0) द्वारा कीजिए। इस परिभाषा का प्रयोग करके निम्नलिखित तालिका को पूर्ण कीजिए। इस फलन का प्रांत तथा परिसर क्या हैं?
 
X
 
-2 -1.5-1 -0.5 0.25 0.5 1 1.5
 
2
 
y =
 
X
 
...
 
हल पूर्ण की गई तालिका इस प्रकार है:
 
x
 
-2
 
-1.5 -1 -0.5 0.25 0.5 1
 
1.5
 
2
 
0.5 -0.67 -1 -2 4
 
2
 
1 0.67
 
0.5
 
इसका प्रांत, शून्य के अतिरिक्त समस्त वास्तविक संख्याएँ हैं तथा इसका परिसर भी शून्य के अतिरिक्त समस्त वास्तविक संख्याएँ हैं। f का आलेख आकृति 2.12 में प्रदर्शित है।
 
 
उदाहरण 10 मान लीजिए कि N प्राकृत संख्याओं का समुच्चय हे और N पर परिभाषित एक संबंध R इस प्रकार है कि R = { ( x, y) : y = 2x, x, ye N}.
 
R के प्रांत, सहप्रांत तथा परिसर क्या हैं? क्या यह संबंध, एक फलन है ?
 
हल R का प्रांत, प्राकृत संख्याओं का समुच्चय N है । इसका सहप्रांत भी N है। इसका परिसर सम प्राकृत संख्याओं का समुच्चय
 
है।
 
क्योंकि प्रत्येक प्राकृत संख्या ” का एक और केवल एक ही प्रतिबिंब है, इसलिए यह संबंध एक फलन है।
[[Category:संबंध और फलन]][[Category:कक्षा-11]][[Category:गणित]][[Category:गणित]]

Latest revision as of 11:44, 22 November 2024

परिचय

इस अनुच्छेद में, हम एक विशेष प्रकार के संबंध का अध्ययन करेंगे, जिसे फलन कहते हैं। हम फलन को एक नियम के रूप में देख सकते हैं, जिससे कुछ दिए हुए अवयवों से नए अवयव उत्पन्न होते हैं। फलन को सूचित करने के लिए अनेक पद प्रयुक्त किए जाते हैं, जैसे 'प्रतिचित्र' अथवा 'प्रतिचित्रण'

परिभाषा-1

एक समुच्चय से समुच्चय का संबंध, एक फलन कहलाता है, यदि समुच्चय के प्रत्येक अवयव का समुच्चय में एक और केवल एक प्रतिबिंब होता है।

दूसरे शब्दों में, फलन , किसी अरिक्त समुच्चय से एक अरिक्त समुच्चय का है , इस प्रकार का संबंध कि का प्रांत है तथा के किसी भी दो भिन्न क्रमित युग्मों के प्रथम घटक समान नहीं हैं।

यदि , से का एक फलन है तथा , तो , जहाँ को के अंतर्गत का प्रतििबम्ब तथा a को का 'पूर्व प्रतिबिंब' कहते हैं।

से के फलन को प्रतीकात्मक रूप में से निरूपित करते हैं।

नीचे दिए उदाहरणों में बहुत से संबंधों पर विचार करेंगे, जिनमें से कुछ फलन हैं और दूसरे फलन नहीं हैं।

उदाहरण 1: मान लेते हैं कि प्राकृत संख्याओं का समुच्चय है और पर परिभाषित एक संबंध इस प्रकार है कि

के प्रांत, सहप्रांत तथा परिसर क्या हैं? क्या यह संबंध, एक फलन है हम यह ज्ञात करने का प्रयास करेंगे।

हल का प्रांत, प्राकृत संख्याओं का समुच्चय है । इसका सहप्रांत भी है। इसका परिसर सम प्राकृत संख्याओं का समुच्चय है।

क्योंकि प्रत्येक प्राकृत संख्या ”" का एक और केवल एक ही प्रतिबिंब है, इसलिए यह संबंध एक फलन है।

परिभाषा-2

एक ऐसे फलन को जिसका परिसर वास्तविक संख्याओं का समुच्चय या उसका कोई उपसमुच्चय हो, वास्तविक मान फलन कहते हैं। यदि वास्तविक चर वाले किसी वास्तविक मान फलन का प्रांत भी वास्तविक संख्याओं का समुच्चय अथवा उसका कोई उपसमुच्चय हो तो इसे वास्तविक फलन भी कहते हैं।

उदाहरण 2: मान लीजिए कि वास्तविक संख्याओं का समुच्चय है। , , द्वारा परिभाषित एक वास्तविक मान फलन है। इस परिभाषा का प्रयोग करके, नीचे दी गई सारणी को पूर्ण करने के बाद परिणाम स्वरूप निम्न प्रस्तुत सारणी में देखते हैं।

हल पूर्ण की हुई सारणी नीचे दी गई है:

6 7