सतत बारंबारता बंटन: Difference between revisions
(added content) |
(added content) |
||
| Line 1: | Line 1: | ||
आवृत्ति | आवृत्ति बंटन एक मात्रात्मक चर के कच्चे डेटा को व्यवस्थित करने का एक व्यापक तरीका है। आवृत्ति बंटन तालिकाएँ दो प्रकार की होती हैं। वे असतत आवृत्ति बंटन और सतत आवृत्ति बंटन हैं। | ||
सांख्यिकी में, आवृत्ति | == परिभाषा == | ||
सतत बारंबारता बंटन एक श्रंखला है जिसमें आंकड़ों को बिना अंतराल के विभिन्न वर्ग अंतरालों में वर्गीकृत किया जाता है और उनकी संबंधित आवृत्तियों को वर्ग अंतराल और वर्ग चौड़ाई के अनुसार प्रदान किया जाता है। | |||
सांख्यिकी में, आवृत्ति बंटन उन मानों की एक सतत व्यवस्था है जो एक या अधिक चर एक नमूने में लेते हैं। जब आप तालिका में कुछ प्रविष्टि लिखते हैं तो इसमें एक विशेष अंतराल के भीतर आवृत्ति होती है। केंद्रीय प्रवृत्ति के माप का उपयोग डेटा को सारांशित करने के लिए किया जाता है। यह दिए गए डेटा के सेट का वर्णन करने के लिए सबसे अधिक प्रतिनिधि मान निर्दिष्ट करता है। अंकगणित माध्य औसत की गणना करने की सबसे आम विधि है। यह दिए गए डेटा के अवलोकन पर आधारित है और इसकी गणना करना बहुत आसान है। माध्यिका ऐसे डेटा का बेहतर सारांश है। गुणात्मक डेटा खोजने के लिए बहुलक का उपयोग किया जाता है। | |||
== केंद्रीय प्रवृत्ति का माप == | == केंद्रीय प्रवृत्ति का माप == | ||
औसत की गणना करने के लिए तीन सबसे महत्वपूर्ण विधियाँ हैं। वे हैं माध्य, माध्यिका और बहुलक। | औसत की गणना करने के लिए तीन सबसे महत्वपूर्ण विधियाँ हैं। वे हैं माध्य, माध्यिका और बहुलक। | ||
अंकगणितीय माध्य को सभी प्रेक्षणों के मानों के योग को प्रेक्षणों की संख्या से विभाजित करके परिभाषित किया जाता है। माध्यिका वह मध्य मान है जब दिए गए डेटा सेट को आरोही क्रम में व्यवस्थित किया जाता है। बहुलक सबसे उपयुक्त माप है। यह वह मान है जो अधिकतम बार आता है। अब, हम सतत आवृत्ति | अंकगणितीय माध्य को सभी प्रेक्षणों के मानों के योग को प्रेक्षणों की संख्या से विभाजित करके परिभाषित किया जाता है। माध्यिका वह मध्य मान है जब दिए गए डेटा सेट को आरोही क्रम में व्यवस्थित किया जाता है। बहुलक सबसे उपयुक्त माप है। यह वह मान है जो अधिकतम बार आता है। अब, हम सतत आवृत्ति बंटन की गणना पर विचार करेंगे। | ||
== सतत आवृत्ति | == सतत आवृत्ति बंटन की गणना == | ||
सतत आवृत्ति | सतत आवृत्ति बंटन की गणना करने के लिए हमारे पास चार चरण हैं- | ||
समान या असमान आकार के वर्ग अंतराल होने चाहिए। | समान या असमान आकार के वर्ग अंतराल होने चाहिए। | ||
असमान वर्ग अंतराल आकारों की दो स्थितियाँ हैं। वे हैं: जब हमारे पास आय और अन्य संबंधित चर पर डेटा होता है जहाँ सीमा बहुत अधिक होती है। यदि सीमा के एक छोटे से हिस्से में कई मान मौजूद हैं, तो समान आकार वाले वर्ग अंतराल का उपयोग करने से विभिन्न मानों पर जानकारी का नुकसान होगा। हमारे द्वारा चर्चा किए गए मामले को छोड़कर, हम आवृत्ति | असमान वर्ग अंतराल आकारों की दो स्थितियाँ हैं। वे हैं: जब हमारे पास आय और अन्य संबंधित चर पर डेटा होता है जहाँ सीमा बहुत अधिक होती है। यदि सीमा के एक छोटे से हिस्से में कई मान मौजूद हैं, तो समान आकार वाले वर्ग अंतराल का उपयोग करने से विभिन्न मानों पर जानकारी का नुकसान होगा। हमारे द्वारा चर्चा किए गए मामले को छोड़कर, हम आवृत्ति बंटन में समान आकार के वर्ग अंतराल को परिभाषित कर सकते हैं। | ||
हमारे पास कितने वर्ग होने चाहिए। | हमारे पास कितने वर्ग होने चाहिए। | ||
| Line 27: | Line 30: | ||
वर्ग सीमाएँ निश्चित और स्पष्ट रूप से बताई जानी चाहिए। उदाहरण के लिए, हमारे पास दो प्रकार के वर्ग अंतराल हैं, जैसे कि अनन्य वर्ग अंतराल: इस प्रकार के वर्ग अंतराल में, ऊपरी या निचली वर्ग सीमा के बराबर एक अवलोकन को वर्ग की आवृत्ति से बाहर रखा जाता है। समावेशी वर्ग अंतराल: यहाँ, एक वर्ग की निचली और ऊपरी सीमाओं के बराबर मान उसी वर्ग की आवृत्ति में शामिल किए जाते हैं। | वर्ग सीमाएँ निश्चित और स्पष्ट रूप से बताई जानी चाहिए। उदाहरण के लिए, हमारे पास दो प्रकार के वर्ग अंतराल हैं, जैसे कि अनन्य वर्ग अंतराल: इस प्रकार के वर्ग अंतराल में, ऊपरी या निचली वर्ग सीमा के बराबर एक अवलोकन को वर्ग की आवृत्ति से बाहर रखा जाता है। समावेशी वर्ग अंतराल: यहाँ, एक वर्ग की निचली और ऊपरी सीमाओं के बराबर मान उसी वर्ग की आवृत्ति में शामिल किए जाते हैं। | ||
== सतत आवृत्ति | == सतत आवृत्ति बंटन सारणी उदाहरण- == | ||
प्रश्न- दी गई सारणी पर विचार करें। बहुलक का मान ज्ञात करें। | प्रश्न- दी गई सारणी पर विचार करें। बहुलक का मान ज्ञात करें। | ||
{| class="wikitable" | {| class="wikitable" | ||
| Line 57: | Line 60: | ||
|4 | |4 | ||
|} | |} | ||
उत्तर- हम जानते हैं कि यह संचयी आवृत्ति | उत्तर- हम जानते हैं कि यह संचयी आवृत्ति बंटन का मामला है। बहुलक की गणना करने के लिए, पहले अपवर्जी श्रृंखला में परिवर्तित करें। यहाँ, श्रृंखला अवरोही क्रम में है। तालिका को सामान्य आवृत्ति तालिका में परिवर्तित करना होगा। | ||
{| class="wikitable" | {| class="wikitable" | ||
|data group | |data group | ||
| Line 103: | Line 106: | ||
== वर्ग आवृत्ति == | == वर्ग आवृत्ति == | ||
वर्ग आवृत्ति को दिए गए वर्ग अंतराल में डेटा को श्रृंखला में दोहराए जाने की संख्या के रूप में परिभाषित किया जाता है। आवृत्ति | वर्ग आवृत्ति को दिए गए वर्ग अंतराल में डेटा को श्रृंखला में दोहराए जाने की संख्या के रूप में परिभाषित किया जाता है। आवृत्ति बंटन तालिका बनाने के लिए, आपको टैली चिह्नों का उपयोग करके तालिका बनानी होगी। यह आवृत्ति बंटन तालिका की गणना करने का सबसे आसान तरीका है। | ||
== निष्कर्ष == | == निष्कर्ष == | ||
लेख में असतत और सतत चर को परिभाषित किया गया था। हमने आवृत्ति | लेख में असतत और सतत चर को परिभाषित किया गया था। हमने आवृत्ति बंटन पर भी चर्चा की है। हमने अवधारणा को बेहतर ढंग से समझने के लिए हल किए गए उदाहरण के साथ आवृत्ति बंटन तालिका को गहराई से समझाया है। हमने वर्ग आवृत्ति, माध्य विचलन के साथ-साथ मानक विचलन के बारे में बात की है। हम पहले से ही जानते हैं कि केंद्रीय प्रवृत्ति का माप एकल मान के साथ डेटा को सारांशित करता है जो पूरे डेटा का प्रतिनिधित्व करता है। अंकगणितीय माध्य से वस्तुओं के विचलन का योग शून्य के बराबर है। विभिन्न वस्तुओं को उनके महत्व के अनुसार भार देना महत्वपूर्ण है। | ||
[[Category:सांख्यिकी]][[Category:कक्षा-11]][[Category:गणित]] | [[Category:सांख्यिकी]][[Category:कक्षा-11]][[Category:गणित]] | ||
Revision as of 07:55, 27 November 2024
आवृत्ति बंटन एक मात्रात्मक चर के कच्चे डेटा को व्यवस्थित करने का एक व्यापक तरीका है। आवृत्ति बंटन तालिकाएँ दो प्रकार की होती हैं। वे असतत आवृत्ति बंटन और सतत आवृत्ति बंटन हैं।
परिभाषा
सतत बारंबारता बंटन एक श्रंखला है जिसमें आंकड़ों को बिना अंतराल के विभिन्न वर्ग अंतरालों में वर्गीकृत किया जाता है और उनकी संबंधित आवृत्तियों को वर्ग अंतराल और वर्ग चौड़ाई के अनुसार प्रदान किया जाता है।
सांख्यिकी में, आवृत्ति बंटन उन मानों की एक सतत व्यवस्था है जो एक या अधिक चर एक नमूने में लेते हैं। जब आप तालिका में कुछ प्रविष्टि लिखते हैं तो इसमें एक विशेष अंतराल के भीतर आवृत्ति होती है। केंद्रीय प्रवृत्ति के माप का उपयोग डेटा को सारांशित करने के लिए किया जाता है। यह दिए गए डेटा के सेट का वर्णन करने के लिए सबसे अधिक प्रतिनिधि मान निर्दिष्ट करता है। अंकगणित माध्य औसत की गणना करने की सबसे आम विधि है। यह दिए गए डेटा के अवलोकन पर आधारित है और इसकी गणना करना बहुत आसान है। माध्यिका ऐसे डेटा का बेहतर सारांश है। गुणात्मक डेटा खोजने के लिए बहुलक का उपयोग किया जाता है।
केंद्रीय प्रवृत्ति का माप
औसत की गणना करने के लिए तीन सबसे महत्वपूर्ण विधियाँ हैं। वे हैं माध्य, माध्यिका और बहुलक।
अंकगणितीय माध्य को सभी प्रेक्षणों के मानों के योग को प्रेक्षणों की संख्या से विभाजित करके परिभाषित किया जाता है। माध्यिका वह मध्य मान है जब दिए गए डेटा सेट को आरोही क्रम में व्यवस्थित किया जाता है। बहुलक सबसे उपयुक्त माप है। यह वह मान है जो अधिकतम बार आता है। अब, हम सतत आवृत्ति बंटन की गणना पर विचार करेंगे।
सतत आवृत्ति बंटन की गणना
सतत आवृत्ति बंटन की गणना करने के लिए हमारे पास चार चरण हैं-
समान या असमान आकार के वर्ग अंतराल होने चाहिए।
असमान वर्ग अंतराल आकारों की दो स्थितियाँ हैं। वे हैं: जब हमारे पास आय और अन्य संबंधित चर पर डेटा होता है जहाँ सीमा बहुत अधिक होती है। यदि सीमा के एक छोटे से हिस्से में कई मान मौजूद हैं, तो समान आकार वाले वर्ग अंतराल का उपयोग करने से विभिन्न मानों पर जानकारी का नुकसान होगा। हमारे द्वारा चर्चा किए गए मामले को छोड़कर, हम आवृत्ति बंटन में समान आकार के वर्ग अंतराल को परिभाषित कर सकते हैं।
हमारे पास कितने वर्ग होने चाहिए।
यह अवलोकनों की कुल संख्या पर निर्भर करता है। इसलिए, कक्षाओं की संख्या 6 से 15 के बीच हो सकती है। इसलिए, यदि हम समान आकार के वर्ग अंतराल का उपयोग कर रहे हैं, तो हम वर्ग अंतराल के आकार से श्रेणी को विभाजित करके कक्षाओं की संख्या की गणना कर सकते हैं।
प्रत्येक वर्ग का आकार क्या होना चाहिए।
जब हम चर की श्रेणी पर आधारित वर्ग अंतराल जानते हैं, तो हम कक्षाओं की संख्या ज्ञात कर सकते हैं। इस प्रकार, हम देख सकते हैं कि ये दोनों आपस में जुड़े हुए हैं। इसलिए, हमें उनके बारे में एक साथ निर्णय लेना होगा।
हमें वर्ग सीमाएँ कैसे निर्धारित करनी चाहिए
वर्ग सीमाएँ निश्चित और स्पष्ट रूप से बताई जानी चाहिए। उदाहरण के लिए, हमारे पास दो प्रकार के वर्ग अंतराल हैं, जैसे कि अनन्य वर्ग अंतराल: इस प्रकार के वर्ग अंतराल में, ऊपरी या निचली वर्ग सीमा के बराबर एक अवलोकन को वर्ग की आवृत्ति से बाहर रखा जाता है। समावेशी वर्ग अंतराल: यहाँ, एक वर्ग की निचली और ऊपरी सीमाओं के बराबर मान उसी वर्ग की आवृत्ति में शामिल किए जाते हैं।
सतत आवृत्ति बंटन सारणी उदाहरण-
प्रश्न- दी गई सारणी पर विचार करें। बहुलक का मान ज्ञात करें।
| data | Cumulative Frequency |
| Less than 50 | 97 |
| less than 45 | 95 |
| Less than 40 | 90 |
| Less than 35 | 80 |
| Less than 30 | 60 |
| Less than 25 | 30 |
| Less than 20 | 12 |
| Less than 15 | 4 |
उत्तर- हम जानते हैं कि यह संचयी आवृत्ति बंटन का मामला है। बहुलक की गणना करने के लिए, पहले अपवर्जी श्रृंखला में परिवर्तित करें। यहाँ, श्रृंखला अवरोही क्रम में है। तालिका को सामान्य आवृत्ति तालिका में परिवर्तित करना होगा।
| data group | Frequency |
| 45-50 | 97-95=2 |
| 40-45 | 95-90=5 |
| 35-40 | 90-80=10 |
| 30-35 | 80-60=20 |
| 25-30 | 60-30= 30 |
| 20-25 | 30-12=18 |
| 15-20 | 12-4=8 |
| 10-15 | 4 |
बहुलक का मान 25-30 वर्ग अंतराल में होता है।
यहाँ, बहुलक वर्ग की निचली सीमा (L) = 25
मोडल वर्ग की आवृत्ति और बहुलक वर्ग से पहले वाले वर्ग की आवृत्ति के बीच का अंतर (D1) = 30-18=12
मोडल वर्ग की आवृत्ति और बहुलक वर्ग के बाद वाले वर्ग की आवृत्ति के बीच का अंतर (D2) = 30-20=10
वर्ग अंतराल (h) = 5
मोडल का मान = L + D1D1+D2h= 25+ 1212+105
= 27.27
अतः बहुलक 27.27 है
वर्ग आवृत्ति
वर्ग आवृत्ति को दिए गए वर्ग अंतराल में डेटा को श्रृंखला में दोहराए जाने की संख्या के रूप में परिभाषित किया जाता है। आवृत्ति बंटन तालिका बनाने के लिए, आपको टैली चिह्नों का उपयोग करके तालिका बनानी होगी। यह आवृत्ति बंटन तालिका की गणना करने का सबसे आसान तरीका है।
निष्कर्ष
लेख में असतत और सतत चर को परिभाषित किया गया था। हमने आवृत्ति बंटन पर भी चर्चा की है। हमने अवधारणा को बेहतर ढंग से समझने के लिए हल किए गए उदाहरण के साथ आवृत्ति बंटन तालिका को गहराई से समझाया है। हमने वर्ग आवृत्ति, माध्य विचलन के साथ-साथ मानक विचलन के बारे में बात की है। हम पहले से ही जानते हैं कि केंद्रीय प्रवृत्ति का माप एकल मान के साथ डेटा को सारांशित करता है जो पूरे डेटा का प्रतिनिधित्व करता है। अंकगणितीय माध्य से वस्तुओं के विचलन का योग शून्य के बराबर है। विभिन्न वस्तुओं को उनके महत्व के अनुसार भार देना महत्वपूर्ण है।