सतत बारंबारता बंटन: Difference between revisions
(added content) |
(added internal links) |
||
| (2 intermediate revisions by the same user not shown) | |||
| Line 1: | Line 1: | ||
बारंबारता बंटन एक मात्रात्मक चर के [[यथाप्राप्त आंकड़े|यथाप्राप्त आंकडों]] को व्यवस्थित करने का एक व्यापक उपाय है। बारंबारता बंटन तालिकाएँ दो प्रकार की होती हैं। वे असतत बारंबारता बंटन और सतत बारंबारता बंटन हैं। | |||
सांख्यिकी में, | == परिभाषा == | ||
सतत [[बारंबारता बंटनों का विश्लेषण|बारंबारता बंटन]] एक श्रंखला है जिसमें आंकड़ों को बिना अंतराल के विभिन्न वर्ग अंतरालों में वर्गीकृत किया जाता है और उनकी संबंधित आवृत्तियों को वर्ग अंतराल और वर्ग चौड़ाई के अनुसार प्रदान किया जाता है। | |||
सांख्यिकी में, बारंबारता बंटन उन मानों की एक सतत व्यवस्था है जो एक या अधिक चर एक नमूने में लेते हैं। जब आप तालिका में कुछ प्रविष्टि लिखते हैं तो इसमें एक विशेष अंतराल के भीतर बारंबारता होती है। केंद्रीय प्रवृत्ति के माप का उपयोग आंकडों को सारांशित करने के लिए किया जाता है। यह दिए गए आंकडों के समुच्चय का वर्णन करने के लिए सबसे अधिक प्रतिनिधि मान निर्दिष्ट करता है। समांतर माध्य औसत की गणना करने की सबसे आम विधि है। यह दिए गए आंकडों के अवलोकन पर आधारित है और इसकी गणना करना बहुत आसान है। माध्यिका ऐसे आंकडों का बेहतर सारांश है। गुणात्मक [[आंकड़े|आंकडें]] ज्ञात करने के लिए बहुलक का उपयोग किया जाता है। | |||
== केंद्रीय प्रवृत्ति का माप == | == केंद्रीय प्रवृत्ति का माप == | ||
औसत की गणना करने के लिए तीन सबसे महत्वपूर्ण विधियाँ हैं। वे हैं माध्य, माध्यिका और बहुलक। | औसत की गणना करने के लिए तीन सबसे महत्वपूर्ण विधियाँ हैं। वे हैं माध्य, माध्यिका और बहुलक। | ||
समांतर माध्य को सभी प्रेक्षणों के मानों के योग को प्रेक्षणों की संख्या से विभाजित करके परिभाषित किया जाता है। माध्यिका वह मध्य मान है जब दिए गए आंकडों के समुच्चय को आरोही क्रम में व्यवस्थित किया जाता है। बहुलक सबसे उपयुक्त माप है। यह वह मान है जो अधिकतम बार आता है। अब, हम सतत बारंबारता बंटन की गणना पर विचार करेंगे। | |||
== सतत | == सतत बारंबारता बंटन की गणना == | ||
सतत | सतत बारंबारता बंटन की गणना करने के लिए हमारे पास चार चरण हैं- | ||
समान या असमान आकार के वर्ग अंतराल होने चाहिए। | * समान या असमान आकार के वर्ग अंतराल होने चाहिए। | ||
असमान वर्ग अंतराल आकारों की दो स्थितियाँ हैं। वे हैं: जब हमारे पास आय और अन्य संबंधित चर पर | असमान वर्ग अंतराल आकारों की दो स्थितियाँ हैं। वे हैं: जब हमारे पास आय और अन्य संबंधित चर पर आंकड़ा होता है जहाँ सीमा बहुत अधिक होती है। यदि सीमा के एक छोटे से भाग में कई मान उपस्थित हैं, तो समान आकार वाले वर्ग अंतराल का उपयोग करने से विभिन्न मानों पर जानकारी की हानि होगी। हमारे द्वारा चर्चा किए गए परिस्थितियों को छोड़कर, हम बारंबारता बंटन में समान आकार के वर्ग अंतराल को परिभाषित कर सकते हैं। | ||
हमारे पास कितने वर्ग होने चाहिए। | * हमारे पास कितने वर्ग होने चाहिए। | ||
यह | यह प्रेक्षणों की कुल संख्या पर निर्भर करता है। इसलिए, कक्षाओं की संख्या 6 से 15 के बीच हो सकती है। इसलिए, यदि हम समान आकार के वर्ग अंतराल का उपयोग कर रहे हैं, तो हम वर्ग अंतराल के आकार से श्रेणी को विभाजित करके कक्षाओं की संख्या की गणना कर सकते हैं। | ||
प्रत्येक वर्ग का आकार क्या होना चाहिए। | * प्रत्येक वर्ग का आकार क्या होना चाहिए। | ||
जब हम चर की श्रेणी पर आधारित वर्ग अंतराल जानते हैं, तो हम कक्षाओं की संख्या ज्ञात कर सकते हैं। इस प्रकार, हम देख सकते हैं कि ये दोनों आपस में जुड़े हुए हैं। इसलिए, हमें उनके बारे में एक साथ निर्णय लेना होगा। | जब हम चर की श्रेणी पर आधारित वर्ग अंतराल जानते हैं, तो हम कक्षाओं की संख्या ज्ञात कर सकते हैं। इस प्रकार, हम देख सकते हैं कि ये दोनों आपस में जुड़े हुए हैं। इसलिए, हमें उनके बारे में एक साथ निर्णय लेना होगा। | ||
हमें वर्ग सीमाएँ कैसे निर्धारित करनी चाहिए | * हमें वर्ग सीमाएँ कैसे निर्धारित करनी चाहिए | ||
वर्ग सीमाएँ निश्चित और स्पष्ट रूप से बताई जानी चाहिए। उदाहरण के लिए, हमारे पास दो प्रकार के वर्ग अंतराल हैं, जैसे कि अनन्य वर्ग अंतराल: इस प्रकार के वर्ग अंतराल में, ऊपरी या निचली वर्ग सीमा के बराबर एक | वर्ग सीमाएँ निश्चित और स्पष्ट रूप से बताई जानी चाहिए। उदाहरण के लिए, हमारे पास दो प्रकार के वर्ग अंतराल हैं, जैसे कि अनन्य वर्ग अंतराल: इस प्रकार के वर्ग अंतराल में, ऊपरी या निचली वर्ग सीमा के बराबर एक प्रेक्षण को वर्ग की बारंबारता से बाहर रखा जाता है। समावेशी वर्ग अंतराल: यहाँ, एक वर्ग की निचली और ऊपरी सीमाओं के बराबर मान उसी वर्ग की बारंबारता में उपस्थित किए जाते हैं। | ||
== सतत | == सतत बारंबारता बंटन सारणी उदाहरण- == | ||
प्रश्न- दी गई सारणी पर विचार करें। बहुलक का मान ज्ञात करें। | प्रश्न- दी गई सारणी पर विचार करें। बहुलक का मान ज्ञात करें। | ||
{| class="wikitable" | {| class="wikitable" | ||
| | |आँकड़ें | ||
| | |संचयी बारंबारता | ||
|- | |- | ||
| | |50 से कम | ||
|97 | |97 | ||
|- | |- | ||
| | |45 से कम | ||
|95 | |95 | ||
|- | |- | ||
| | |40 से कम | ||
|90 | |90 | ||
|- | |- | ||
| | |35 से कम | ||
|80 | |80 | ||
|- | |- | ||
| | |30 से कम | ||
|60 | |60 | ||
|- | |- | ||
| | |25 से कम | ||
|30 | |30 | ||
|- | |- | ||
| | |20 से कम | ||
|12 | |12 | ||
|- | |- | ||
| | |15 से कम | ||
|4 | |4 | ||
|} | |} | ||
उत्तर- हम जानते हैं कि यह संचयी | उत्तर- हम जानते हैं कि यह [[संचयी बारंबारता बंटन का आलेखीय निरूपण|संचयी बारंबारता बंटन]] की स्थिति है। बहुलक की गणना करने के लिए, पहले अनन्य श्रृंखला में परिवर्तित करें। यहाँ, श्रृंखला अवरोही क्रम में है। तालिका को सामान्य बारंबारता तालिका में परिवर्तित करना होगा। | ||
{| class="wikitable" | {| class="wikitable" | ||
| | |'''आँकड़ा समूह''' | ||
| | |'''बारंबारता''' | ||
|- | |- | ||
|45-50 | |45-50 | ||
| Line 86: | Line 89: | ||
|4 | |4 | ||
|} | |} | ||
बहुलक का मान 25-30 वर्ग अंतराल में होता है। | बहुलक का मान <math>25-30</math>वर्ग अंतराल में होता है। | ||
यहाँ, बहुलक वर्ग की निचली सीमा (L) = 25 | यहाँ, बहुलक वर्ग की निचली सीमा <math>(L) = 25</math> | ||
मोडल वर्ग की | मोडल वर्ग की बारंबारता और बहुलक वर्ग से पहले वाले वर्ग की बारंबारता के बीच का अंतर <math>(D1) = 30-18=12</math> | ||
मोडल वर्ग की | मोडल वर्ग की बारंबारता और बहुलक वर्ग के बाद वाले वर्ग की बारंबारता के बीच का अंतर <math>(D2) = 30-20=10</math> | ||
वर्ग अंतराल (h) = 5 | वर्ग अंतराल <math>(h) = 5</math> | ||
मोडल का मान = L + D1D1+D2h= 25+ 1212+105 | मोडल का मान <math>= L + D1D1+D2h= 25+ 1212+105</math> | ||
= 27.27 | <math>= 27.27</math> | ||
अतः बहुलक 27.27 है | अतः बहुलक <math>27.27</math> है | ||
== वर्ग | == वर्ग बारंबारता == | ||
वर्ग | वर्ग बारंबारता को दिए गए वर्ग अंतराल में आंकडों को श्रृंखला में दोहराए जाने की संख्या के रूप में परिभाषित किया जाता है। बारंबारता बंटन तालिका बनाने के लिए, आपको मिलान चिह्नों का उपयोग करके तालिका बनानी होगी। यह बारंबारता बंटन तालिका की गणना करने का सबसे आसान उपाय है। | ||
== निष्कर्ष == | == निष्कर्ष == | ||
लेख में | लेख में सतत चर को परिभाषित किया गया है। हमने बारंबारता बंटन पर भी चर्चा की है। हमने अवधारणा को बेहतर ढंग से समझने के लिए हल किए गए उदाहरण के साथ बारंबारता बंटन तालिका को गहराई से समझाया है। हमने वर्ग बारंबारता, माध्य विचलन के साथ-साथ मानक विचलन के बारे में बात की है। हम पहले से ही जानते हैं कि केंद्रीय प्रवृत्ति का माप एकल मान के साथ आंकडों को सारांशित करता है जो पूरे आंकडों का प्रतिनिधित्व करता है। | ||
[[Category:सांख्यिकी]][[Category:कक्षा-11]][[Category:गणित]] | [[Category:सांख्यिकी]][[Category:कक्षा-11]][[Category:गणित]] | ||
Latest revision as of 09:35, 27 November 2024
बारंबारता बंटन एक मात्रात्मक चर के यथाप्राप्त आंकडों को व्यवस्थित करने का एक व्यापक उपाय है। बारंबारता बंटन तालिकाएँ दो प्रकार की होती हैं। वे असतत बारंबारता बंटन और सतत बारंबारता बंटन हैं।
परिभाषा
सतत बारंबारता बंटन एक श्रंखला है जिसमें आंकड़ों को बिना अंतराल के विभिन्न वर्ग अंतरालों में वर्गीकृत किया जाता है और उनकी संबंधित आवृत्तियों को वर्ग अंतराल और वर्ग चौड़ाई के अनुसार प्रदान किया जाता है।
सांख्यिकी में, बारंबारता बंटन उन मानों की एक सतत व्यवस्था है जो एक या अधिक चर एक नमूने में लेते हैं। जब आप तालिका में कुछ प्रविष्टि लिखते हैं तो इसमें एक विशेष अंतराल के भीतर बारंबारता होती है। केंद्रीय प्रवृत्ति के माप का उपयोग आंकडों को सारांशित करने के लिए किया जाता है। यह दिए गए आंकडों के समुच्चय का वर्णन करने के लिए सबसे अधिक प्रतिनिधि मान निर्दिष्ट करता है। समांतर माध्य औसत की गणना करने की सबसे आम विधि है। यह दिए गए आंकडों के अवलोकन पर आधारित है और इसकी गणना करना बहुत आसान है। माध्यिका ऐसे आंकडों का बेहतर सारांश है। गुणात्मक आंकडें ज्ञात करने के लिए बहुलक का उपयोग किया जाता है।
केंद्रीय प्रवृत्ति का माप
औसत की गणना करने के लिए तीन सबसे महत्वपूर्ण विधियाँ हैं। वे हैं माध्य, माध्यिका और बहुलक।
समांतर माध्य को सभी प्रेक्षणों के मानों के योग को प्रेक्षणों की संख्या से विभाजित करके परिभाषित किया जाता है। माध्यिका वह मध्य मान है जब दिए गए आंकडों के समुच्चय को आरोही क्रम में व्यवस्थित किया जाता है। बहुलक सबसे उपयुक्त माप है। यह वह मान है जो अधिकतम बार आता है। अब, हम सतत बारंबारता बंटन की गणना पर विचार करेंगे।
सतत बारंबारता बंटन की गणना
सतत बारंबारता बंटन की गणना करने के लिए हमारे पास चार चरण हैं-
- समान या असमान आकार के वर्ग अंतराल होने चाहिए।
असमान वर्ग अंतराल आकारों की दो स्थितियाँ हैं। वे हैं: जब हमारे पास आय और अन्य संबंधित चर पर आंकड़ा होता है जहाँ सीमा बहुत अधिक होती है। यदि सीमा के एक छोटे से भाग में कई मान उपस्थित हैं, तो समान आकार वाले वर्ग अंतराल का उपयोग करने से विभिन्न मानों पर जानकारी की हानि होगी। हमारे द्वारा चर्चा किए गए परिस्थितियों को छोड़कर, हम बारंबारता बंटन में समान आकार के वर्ग अंतराल को परिभाषित कर सकते हैं।
- हमारे पास कितने वर्ग होने चाहिए।
यह प्रेक्षणों की कुल संख्या पर निर्भर करता है। इसलिए, कक्षाओं की संख्या 6 से 15 के बीच हो सकती है। इसलिए, यदि हम समान आकार के वर्ग अंतराल का उपयोग कर रहे हैं, तो हम वर्ग अंतराल के आकार से श्रेणी को विभाजित करके कक्षाओं की संख्या की गणना कर सकते हैं।
- प्रत्येक वर्ग का आकार क्या होना चाहिए।
जब हम चर की श्रेणी पर आधारित वर्ग अंतराल जानते हैं, तो हम कक्षाओं की संख्या ज्ञात कर सकते हैं। इस प्रकार, हम देख सकते हैं कि ये दोनों आपस में जुड़े हुए हैं। इसलिए, हमें उनके बारे में एक साथ निर्णय लेना होगा।
- हमें वर्ग सीमाएँ कैसे निर्धारित करनी चाहिए
वर्ग सीमाएँ निश्चित और स्पष्ट रूप से बताई जानी चाहिए। उदाहरण के लिए, हमारे पास दो प्रकार के वर्ग अंतराल हैं, जैसे कि अनन्य वर्ग अंतराल: इस प्रकार के वर्ग अंतराल में, ऊपरी या निचली वर्ग सीमा के बराबर एक प्रेक्षण को वर्ग की बारंबारता से बाहर रखा जाता है। समावेशी वर्ग अंतराल: यहाँ, एक वर्ग की निचली और ऊपरी सीमाओं के बराबर मान उसी वर्ग की बारंबारता में उपस्थित किए जाते हैं।
सतत बारंबारता बंटन सारणी उदाहरण-
प्रश्न- दी गई सारणी पर विचार करें। बहुलक का मान ज्ञात करें।
| आँकड़ें | संचयी बारंबारता |
| 50 से कम | 97 |
| 45 से कम | 95 |
| 40 से कम | 90 |
| 35 से कम | 80 |
| 30 से कम | 60 |
| 25 से कम | 30 |
| 20 से कम | 12 |
| 15 से कम | 4 |
उत्तर- हम जानते हैं कि यह संचयी बारंबारता बंटन की स्थिति है। बहुलक की गणना करने के लिए, पहले अनन्य श्रृंखला में परिवर्तित करें। यहाँ, श्रृंखला अवरोही क्रम में है। तालिका को सामान्य बारंबारता तालिका में परिवर्तित करना होगा।
| आँकड़ा समूह | बारंबारता |
| 45-50 | 97-95=2 |
| 40-45 | 95-90=5 |
| 35-40 | 90-80=10 |
| 30-35 | 80-60=20 |
| 25-30 | 60-30= 30 |
| 20-25 | 30-12=18 |
| 15-20 | 12-4=8 |
| 10-15 | 4 |
बहुलक का मान वर्ग अंतराल में होता है।
यहाँ, बहुलक वर्ग की निचली सीमा
मोडल वर्ग की बारंबारता और बहुलक वर्ग से पहले वाले वर्ग की बारंबारता के बीच का अंतर
मोडल वर्ग की बारंबारता और बहुलक वर्ग के बाद वाले वर्ग की बारंबारता के बीच का अंतर
वर्ग अंतराल
मोडल का मान
अतः बहुलक है
वर्ग बारंबारता
वर्ग बारंबारता को दिए गए वर्ग अंतराल में आंकडों को श्रृंखला में दोहराए जाने की संख्या के रूप में परिभाषित किया जाता है। बारंबारता बंटन तालिका बनाने के लिए, आपको मिलान चिह्नों का उपयोग करके तालिका बनानी होगी। यह बारंबारता बंटन तालिका की गणना करने का सबसे आसान उपाय है।
निष्कर्ष
लेख में सतत चर को परिभाषित किया गया है। हमने बारंबारता बंटन पर भी चर्चा की है। हमने अवधारणा को बेहतर ढंग से समझने के लिए हल किए गए उदाहरण के साथ बारंबारता बंटन तालिका को गहराई से समझाया है। हमने वर्ग बारंबारता, माध्य विचलन के साथ-साथ मानक विचलन के बारे में बात की है। हम पहले से ही जानते हैं कि केंद्रीय प्रवृत्ति का माप एकल मान के साथ आंकडों को सारांशित करता है जो पूरे आंकडों का प्रतिनिधित्व करता है।