थॉमस यंग का प्रयोग: Difference between revisions
Listen
No edit summary |
|||
| (8 intermediate revisions by 2 users not shown) | |||
| Line 1: | Line 1: | ||
Youngs Experiment | Youngs Experiment | ||
[[Category:तरंग प्रकाशिकी]][[Category:कक्षा-12]] | यंग के प्रयोग में दो निकट स्थित स्लिटों के माध्यम से प्रकाश की किरण को चमकाना और स्लिटों के पीछे रखी स्क्रीन पर उभरने वाले प्रकाश के विन्यास का अवलोकन करना शामिल है। यह प्रयोग सबसे पहले 19वीं सदी की शुरुआत में अंग्रेज वैज्ञानिक थॉमस यंग ने किया था। | ||
== प्रयोगात्मक स्थापना == | |||
# प्रकाश की किरण उत्पन्न करने के लिए लेजर जैसे सुसंगत प्रकाश स्रोत का उपयोग किया जाता है। | |||
# प्रकाश किरण को दो बहुत संकीर्ण स्लिट वाले अवरोध की ओर निर्देशित किया जाता है, जिसे डबल-स्लिट कहा जाता है। | |||
# डबल-स्लिट के पीछे एक स्क्रीन है जो प्रकाश विन्यास का प्रग्रहण करती है। | |||
== टिप्पणियाँ == | |||
जब सुसंगत प्रकाश डबल-स्लिट से होकर गुजरता है, तो यह स्क्रीन पर एक व्यतिकरण विन्यास बनाता है। व्यतिकरण विन्यास में बारी-बारी से चमकदार और गहरे फ्रिन्ज होते हैं, जिन्हें व्यतिकरण मैक्सिमा और मिनिमा के रूप में जाना जाता है। | |||
== गणितीय स्पष्टीकरण == | |||
====== पथ लंबाई अंतर (Δd) ====== | |||
यंग के प्रयोग को समझने की कुंजी स्क्रीन पर एक विशेष बिंदु तक दो स्लिटों के बीच पथ लंबाई अंतर (Δd) है। इसकी गणना इस प्रकार की जाती है: | |||
Δd=d⋅sin(θ) | |||
जहाँ: | |||
* Δd पथ लंबाई का अंतर है। | |||
* d दो स्लिटों के बीच की दूरी है (जिसे स्लिट पृथक्करण के रूप में जाना जाता है)। | |||
* θ आपतित किरण और स्लिट से स्क्रीन तक की रेखा के बीच का कोण है। | |||
व्यतिकरण की स्थिति: | |||
कुछ कोणों पर, पथ लंबाई अंतर (Δd) के परिणामस्वरूप रचनात्मक व्यतिकरण होता है, जहां दो तरंगों के शिखर ओवरलैप होते हैं, जिससे एक उज्ज्वल फ्रिंज बनता है। रचनात्मक व्यतिकरण की शर्त है: | |||
Δd=m⋅λ | |||
जहाँ: | |||
* m एक पूर्णांक है जो चमकीले फ्रिंज (1, 2, 3, ...) के क्रम का प्रतिनिधित्व करता है। | |||
* λ प्रकाश की तरंग दैर्ध्य है। | |||
====== व्यतिकरण विन्यास ====== | |||
रचनात्मक और विनाशकारी व्यतिकरण के परिणामस्वरूप, स्क्रीन पर बारी-बारी से उज्ज्वल और अंधेरे फ्रिजों का एक विन्यास देखा जाता है। केंद्रीय फ्रिंज सबसे चमकीला है (m = 0), और अन्य इसके चारों ओर फैले हुए हैं। | |||
== प्रमुख बिंदु == | |||
* यंग का प्रयोग प्रकाश की तरंग प्रकृति के लिए मजबूत सबूत प्रदान करता है क्योंकि व्यतिकरण विन्यास को केवल प्रकाश को तरंग मानकर ही समझाया जा सकता है। | |||
* प्रयोग सुपरपोजिशन के सिद्धांत को प्रदर्शित करता है, जहां तरंगें ओवरलैप होने पर अपने आयाम जोड़ती हैं। | |||
* प्रकाश की विभिन्न तरंग दैर्ध्य λλ के उनके अलग-अलग मूल्यों के कारण अलग-अलग व्यतिकरण विन्यास उत्पन्न करेगी। | |||
== संक्षेप में == | |||
यंग का प्रयोग न केवल तरंग प्रकाशिकी का एक उत्कृष्ट प्रदर्शन है, बल्कि प्रकाश के व्यवहार और व्यतिकरण और विवर्तन की घटनाओं की हमारी समझ के लिए मौलिक निहितार्थ भी है। | |||
[[Category:तरंग प्रकाशिकी]][[Category:कक्षा-12]][[Category:भौतिक विज्ञान]] | |||
Latest revision as of 13:12, 23 September 2024
Youngs Experiment
यंग के प्रयोग में दो निकट स्थित स्लिटों के माध्यम से प्रकाश की किरण को चमकाना और स्लिटों के पीछे रखी स्क्रीन पर उभरने वाले प्रकाश के विन्यास का अवलोकन करना शामिल है। यह प्रयोग सबसे पहले 19वीं सदी की शुरुआत में अंग्रेज वैज्ञानिक थॉमस यंग ने किया था।
प्रयोगात्मक स्थापना
- प्रकाश की किरण उत्पन्न करने के लिए लेजर जैसे सुसंगत प्रकाश स्रोत का उपयोग किया जाता है।
- प्रकाश किरण को दो बहुत संकीर्ण स्लिट वाले अवरोध की ओर निर्देशित किया जाता है, जिसे डबल-स्लिट कहा जाता है।
- डबल-स्लिट के पीछे एक स्क्रीन है जो प्रकाश विन्यास का प्रग्रहण करती है।
टिप्पणियाँ
जब सुसंगत प्रकाश डबल-स्लिट से होकर गुजरता है, तो यह स्क्रीन पर एक व्यतिकरण विन्यास बनाता है। व्यतिकरण विन्यास में बारी-बारी से चमकदार और गहरे फ्रिन्ज होते हैं, जिन्हें व्यतिकरण मैक्सिमा और मिनिमा के रूप में जाना जाता है।
गणितीय स्पष्टीकरण
पथ लंबाई अंतर (Δd)
यंग के प्रयोग को समझने की कुंजी स्क्रीन पर एक विशेष बिंदु तक दो स्लिटों के बीच पथ लंबाई अंतर (Δd) है। इसकी गणना इस प्रकार की जाती है:
Δd=d⋅sin(θ)
जहाँ:
- Δd पथ लंबाई का अंतर है।
- d दो स्लिटों के बीच की दूरी है (जिसे स्लिट पृथक्करण के रूप में जाना जाता है)।
- θ आपतित किरण और स्लिट से स्क्रीन तक की रेखा के बीच का कोण है।
व्यतिकरण की स्थिति:
कुछ कोणों पर, पथ लंबाई अंतर (Δd) के परिणामस्वरूप रचनात्मक व्यतिकरण होता है, जहां दो तरंगों के शिखर ओवरलैप होते हैं, जिससे एक उज्ज्वल फ्रिंज बनता है। रचनात्मक व्यतिकरण की शर्त है:
Δd=m⋅λ
जहाँ:
- m एक पूर्णांक है जो चमकीले फ्रिंज (1, 2, 3, ...) के क्रम का प्रतिनिधित्व करता है।
- λ प्रकाश की तरंग दैर्ध्य है।
व्यतिकरण विन्यास
रचनात्मक और विनाशकारी व्यतिकरण के परिणामस्वरूप, स्क्रीन पर बारी-बारी से उज्ज्वल और अंधेरे फ्रिजों का एक विन्यास देखा जाता है। केंद्रीय फ्रिंज सबसे चमकीला है (m = 0), और अन्य इसके चारों ओर फैले हुए हैं।
प्रमुख बिंदु
- यंग का प्रयोग प्रकाश की तरंग प्रकृति के लिए मजबूत सबूत प्रदान करता है क्योंकि व्यतिकरण विन्यास को केवल प्रकाश को तरंग मानकर ही समझाया जा सकता है।
- प्रयोग सुपरपोजिशन के सिद्धांत को प्रदर्शित करता है, जहां तरंगें ओवरलैप होने पर अपने आयाम जोड़ती हैं।
- प्रकाश की विभिन्न तरंग दैर्ध्य λλ के उनके अलग-अलग मूल्यों के कारण अलग-अलग व्यतिकरण विन्यास उत्पन्न करेगी।
संक्षेप में
यंग का प्रयोग न केवल तरंग प्रकाशिकी का एक उत्कृष्ट प्रदर्शन है, बल्कि प्रकाश के व्यवहार और व्यतिकरण और विवर्तन की घटनाओं की हमारी समझ के लिए मौलिक निहितार्थ भी है।