लीलावती में 'वर्गमूल': Difference between revisions

From Vidyalayawiki

(content modified)
No edit summary
Tag: Reverted
Line 237: Line 237:
==संदर्भ==
==संदर्भ==
<references />
<references />
[[Category:लीलावती में गणित]]
[[Category:लीलावती में गणित]][[Category:भारती कृष्ण तीर्थ द्वारा गणित]]

Revision as of 16:39, 9 August 2023

भूमिका

यहां हम जानेंगे कि लीलावती में वर्णित, किसी संख्या का वर्गमूल कैसे ज्ञात किया जाता है।

श्लोक सं. 22 :

त्यक्त्वान्त्याद् विषमात् कृतिं द्विगुणयेन्मूलं समे तद्धृते

त्यक्त्वा लब्धकृतिं तदाद्यविषमाल्लब्धं द्विनिघ्नं न्यसेत् ।

पङ्क्त्यां पंक्तिहृते समेऽन्त्यविषमात्त्यक्त्वाप्तवर्गं फलम्

पङ्क्त्यां तद् द्विगुणं न्यसेदिति मुहुः पङ्क्तेर्दलं स्यात् पदम् ॥ २२ ॥

अनुवाद :

इकाई के स्थान से प्रारंभ करते हुए, अंकों के ऊपर वैकल्पिक रूप से लंबवत और क्षैतिज रेखा/पट्टियों को चिह्नित करें, ताकि दी गई संख्या प्रत्येक दो-दो अंकों के समूहों में विभाजित हो जाए। [1]सबसे बाएं समूह में एक या दो अंक हो सकते हैं, और उसके शीर्ष पर या दाएं अंक पर क्रमशः एक लंबवत रेखा/पट्टी होगी।

अत्यंत बाईं ओर के समूह से उच्चतम संभव वर्ग (a1) का घटाव करें और पंक्ति(पंक्ति) नामक स्तंभ में 2a1 लिखें।

उपरोक्त घटाव से प्राप्त संख्या के दाईं ओर, अगले समूह से अंक को एक क्षैतिज रेखा के साथ लिखें। इस संख्या को 2a1 से विभाजित करें। भागफल a2 , 9 से अधिक नहीं होना चाहिए। अब 2a2 को 2a1 के नीचे एक स्थान दाईं ओर स्थानांतरित करके लिखें और जोड़ें। यह दूसरी पंक्ति (पंक्ति) है।

इस प्रकार प्राप्त शेषफल के दाईं ओर अगला अंक लिखें और उसमें से दूसरे भागफल a2 के वर्ग का घटाव करें। अब इस प्रकार प्राप्त शेषफल के दाईं ओर, अगला अंक लिखें और इसे दूसरी पंक्ति से विभाजित कीजिए। इससे आवश्यक वर्गमूल का तीसरा अंक प्राप्त होगा। अब वर्गमूल के तीसरे अंक का दुगुना दूसरी पंक्ति (पंक्ति) में एक स्थान से दाईं ओर स्थानांतरित करके जोड़ें। परिणाम तीसरी पंक्ति (पंक्ति) होगा। फिर दी गई संख्या के अगले अंक को शेष के दाईं ओर लिखें और इससे आवश्यक वर्गमूल के तीसरे अंक का वर्ग का घटाव करें। इस प्रक्रिया को दोहराएँ। परिणाम आवश्यक वर्गमूल प्राप्त होगा।

उदाहरण: 196 का वर्गमूल

प्रक्रिया 1: दी गई संख्या को प्रतीक "|" द्वारा विषम (विषम) के रूप में चिह्नित किया जाना है और प्रतीक "-" द्वारा सम (सम) के रूप में चिह्नित किया जाना चाहिए। यह अंकन/चिह्नित करने कि प्रक्रिया इकाई के स्थान से प्रारंभ होनी चाहिए।

विषम (Odd) सम (Even) विषम (Odd)
| - |
1 9 6

यहाँ 6 विषम है, 9 सम है, 1 विषम है।

| - | प्रक्रिया:

अंतिम समूह से, अर्थात-1, उच्चतम संभव वर्ग (12) घटाने पर जो कि 1 है, हमें पहला शेषफल 0 = 1 - 1 प्राप्त होता है। अब 09 प्राप्त करने के लिए, शेषफल 0 के दाईं ओर 9 (दी गई संख्या से) लिखें। मूलम(रूट) स्तंभ में 1 लिखें . 1 x 2 = 2 पहली पंक्ति है। 9 को 2 से इस प्रकार विभाजित करें कि उच्चतम एक अंक का भागफल 9 से अधिक न हो। यहाँ, भागफल 4 है। इस 4 को मूलम(रूट) स्तंभ में 1 के नीचे लिखें। उसी क्षैतिज रेखा में 2 × 4 = 8 को 2 के नीचे 0 के साथ लिखें। दोनों को जोड़कर 28 प्राप्त करें जो कि दूसरी पंक्ति है। फिर 1 प्राप्त करने के लिए 9 से 8 = 2 × 4 घटाएं। इसके दाईं ओर अगला अंक 6 लिखें और हमें 16 प्राप्त होता है। शेष 0 प्राप्त करने के लिए इसमें से 4 का वर्ग घटाएं। आवश्यक वर्गमूल वह संख्या है जो मूलम(रूट) स्तंभ से अंकों को उसी क्रम में लिखकर प्राप्त की जाती है जिस क्रम में हमने उन्हें निकाला है। इसलिए यह 14 है। हम दूसरी पंक्ति के आधे के बराबर संख्या प्राप्त कर सकते हैं। (28 ÷ 2 = 14)

Divisor

भाजक

To be divided

भाज्य

मूलम् (Root) पंक्ति (Paṅkti)
1 9 6
12 = 1 1 1 (1 X 2 = 2)

2

1st
2) 0 9 (4 4 (2 X 4 = 8)

08

2nd
8 28
1 6 14 28 ÷ 2 = 14
42 = 16 1 6
0

उत्तर: 196 का वर्गमूल = 14

उदाहरण: 88209 का वर्गमूल

प्रक्रिया 1: दी गई संख्या को प्रतीक "|" द्वारा विषम (विषम) के रूप में चिह्नित किया जाना है और प्रतीक "-" द्वारा सम (सम) के रूप में चिह्नित किया जाना चाहिए। यह अंकन/चिह्नित करने कि प्रक्रिया इकाई के स्थान से प्रारंभ होनी चाहिए।

विषम (Odd) सम (Even) विषम (Odd) सम (Even) विषम (Odd)
| - | - |
8 8 2 0 9
अंतिम समूह द्वितीय समूह प्रथम समूह
| - | - | प्रक्रिया:

अंतिम समूह से, अर्थात- 8, उच्चतम संभव वर्ग (22) घटाने पर जो कि 4 है, हमें पहला शेषफल 4 = 8 - 4 मिलता है। अब 48 प्राप्त करने के लिए, शेष 4 के दाईं ओर 8 (दी गई संख्या से) लिखें। 2 x 2 = 4 पहली पंक्ति है। 48 को 4 से इस प्रकार विभाजित करें कि उच्चतम एक अंक का भागफल 9 से अधिक न हो। यहाँ, भागफल 9 है। इस 9 को मूलम(रूट) स्तंभ में 2 के नीचे लिखें। उसी क्षैतिज रेखा में 2×9 = 18 लिखिए जिसमें 1 4 के नीचे हो। दोनों को जोड़ कर 58 प्राप्त करें जो कि दूसरी पंक्ति है। फिर 48 में से 36 = 9 × 4 घटाकर 12 प्राप्त करें। इसके दाईं ओर अगला अंक 2 लिखें और हमें 122 प्राप्त होता है। इसमें से 9 का वर्ग घटाकर 41 प्राप्त करें। 41 के दाईं ओर दी गई संख्या से अगला अंक 0 लिखें। 410 को दूसरी पंक्ति से विभाजित करें अर्थात-58 और भागफल के रूप में 7 और शेष के रूप में 4 प्राप्त करें। इसके बाद, हम मूलम(रूट) स्तंभ में संख्या 7 लिखते हैं, और 7 × 2 = 14 इसके दाईं ओर 8 के नीचे 1 लिखते हैं। दोनों को जोड़कर 594 प्राप्त होता है जो तीसरी पंक्ति है। 49 प्राप्त करने के लिए दी गई संख्या के अंतिम अंक 9 को 4 के दाईं ओर लिखें। इसमें से 72 = 49 घटाकर शेष 0 प्राप्त करें। आवश्यक वर्गमूल वह संख्या है, जो मूलम(रूट) स्तंभ से अंकों को क्रम में लिखकर प्राप्त की जाती है। जो हमने उन्हें प्राप्त किया। इसलिए यह 297 है। हम तीसरी पंक्ति के आधे के बराबर संख्या प्राप्त कर सकते हैं।

Divisor

भाजक

To be divided

भाज्य

मूलम् (Root) पंक्ति (Paṅkti)
8 8 2 0 9
22 = 4 4 2 (2 X 2 = 4)

4

1st
4) 4 8 (9 9 (2 X 9 = 18)

18

3 6 58 2nd
1 2 2 7 (2 X 7 = 14)

014

92=81 8 1 594 3rd
58) 4 1 0 (7 594 ÷ 2
4 0 6 297 297
4 9
72=49 4 9
0 0

उत्तर: 88209 का वर्गमूल = 297

यह भी देखें

Square root in Līlāvatī

संदर्भ

  1. "भास्कराचार्य की लीलावती - वैदिक परंपरा के गणित का ग्रंथ। नई दिल्लीः मोतीलाल बनारसीदास पब्लिशर्स। 2001.पृष्ठ 23-25। ISBN 81-208-1420-7।"(Līlāvatī Of Bhāskarācārya - A Treatise of Mathematics of Vedic Tradition. New Delhi: Motilal Banarsidass Publishers. 2001. pp. 23–25. ISBN 81-208-1420-7..)