रेखा का व्यापक समीकरण: Difference between revisions
Ramamurthy (talk | contribs) (Category updated) |
No edit summary |
||
| Line 1: | Line 1: | ||
== रेखा के समीकरण के रूप == | |||
सरल रेखा के लिए ज्ञात मापदंडों के आधार पर, रेखा के समीकरण के 5 रूप हैं जिनका उपयोग रेखा के समीकरण को निर्धारित करने और उसका प्रतिनिधित्व करने के लिए किया जाता है: | |||
=== बिंदु ढलान रूप – === | |||
इस रूप में रेखा पर एक बिंदु और रेखा की ढलान की आवश्यकता होती है। रेखा पर संदर्भित बिंदु <math>(x_1,y_1)</math> है और रेखा की ढलान <math>(m)</math> है। बिंदु एक संख्यात्मक मान है और बिंदु के <math>x</math>-निर्देशांक और <math>y</math>-निर्देशांक को दर्शाता है और रेखा की ढलान <math>(m)</math> सकारात्मक <math>x</math>-अक्ष के साथ एक रेखा का झुकाव है। | |||
यहाँ, <math>(m)</math> में सकारात्मक, नकारात्मक या शून्य ढलान हो सकता है। इसलिए, एक रेखा का समीकरण इस प्रकार है: | |||
<math>( y - y_1</math><math>_1) = m( x - x_1</math><math>_1)</math> | |||
=== दो बिंदु रूप – === | |||
यह रूप दो बिंदुओं -<math>(x_1</math><math> _1, y_1</math><math>_1)</math>और <math>(x_2</math><math>_2, y_2</math><math>_2)</math>से होकर गुजरने वाली रेखा के बिंदु-ढलान का एक और स्पष्टीकरण है: | |||
<math>(y-y_1)=(y_2-y_1)(x_2-x_1)(x-x_1)(y-y_1)=(y_2-y_1)(x_2-x_1)(x-x_1)</math> | |||
=== ढलान अंत: खंड रूप – === | |||
रेखा का ढलान-अंत: खंड रूप <math>y = mx + c</math> है। यहाँ, '<math>m</math>' रेखा का ढलान है, और '<math>c</math>' रेखा का <math>y</math>-अंत: खंड है। यह रेखा <math>y</math>-अक्ष को बिंदु<math>(0, c)</math> पर काटती है, जहाँ <math>c</math> मूल बिंदु से <math>y</math>-अक्ष पर इस बिंदु की दूरी है। | |||
ढलान-अंत: खंड रूप एक महत्वपूर्ण रूप है और गणित के विभिन्न विषयों में इसके बहुत अच्छे अनुप्रयोग हैं। | |||
<math>y = mx + c</math> | |||
=== अंत: खंड रूप – === | |||
इस रूप में रेखा का समीकरण <math>x</math>-अंत: खंड <math>(a)</math> और <math>y</math>-अंत: खंड <math>(b)</math> से बनता है। रेखा <math>x</math>-अक्ष को एक बिंदु <math>(a, 0)</math> पर काटती है, और <math>y</math>-अक्ष को एक बिंदु<math>(0, b)</math> पर काटती है, और <math>a, b</math> मूल बिंदु से इन बिंदुओं की क्रमशः दूरी है। जबकि इन दो बिंदुओं को दो-बिंदु रूप में प्रतिस्थापित किया जा सकता है और रेखा के समीकरण के इस अंत: खंड रूप को प्राप्त करने के लिए सरलीकृत किया जा सकता है। | |||
रेखा के समीकरण का अंत: खंड रूप उस दूरी को स्पष्ट करता है जिस पर रेखा <math>x</math>-अक्ष और <math>y</math>-अक्ष को मूल बिंदु से काटती है। | |||
=== सामान्य रूप - === | |||
सामान्य रूप दी गई रेखा के लंबवत रेखा पर आधारित होता है, जो मूल बिंदु से होकर गुजरती है, और इसे सामान्य के रूप में जाना जाता है। | |||
यहाँ, सामान्य की लंबाई के पैरामीटर '<math>p</math>' हैं और इस सामान्य द्वारा धनात्मक <math>x</math>-अक्ष के साथ बनाया गया कोण '<math>\theta</math>' है जो एक रेखा के समीकरण को बनाने के लिए उपयोगी है। रेखा के समीकरण का सामान्य रूप इस प्रकार है: | |||
<math>xcos\theta + ysin\theta = P</math> | |||
[[Category:सरल रेखाएं]][[Category:कक्षा-11]][[Category:गणित]] | [[Category:सरल रेखाएं]][[Category:कक्षा-11]][[Category:गणित]] | ||
Revision as of 10:33, 20 November 2024
रेखा के समीकरण के रूप
सरल रेखा के लिए ज्ञात मापदंडों के आधार पर, रेखा के समीकरण के 5 रूप हैं जिनका उपयोग रेखा के समीकरण को निर्धारित करने और उसका प्रतिनिधित्व करने के लिए किया जाता है:
बिंदु ढलान रूप –
इस रूप में रेखा पर एक बिंदु और रेखा की ढलान की आवश्यकता होती है। रेखा पर संदर्भित बिंदु है और रेखा की ढलान है। बिंदु एक संख्यात्मक मान है और बिंदु के -निर्देशांक और -निर्देशांक को दर्शाता है और रेखा की ढलान सकारात्मक -अक्ष के साथ एक रेखा का झुकाव है।
यहाँ, में सकारात्मक, नकारात्मक या शून्य ढलान हो सकता है। इसलिए, एक रेखा का समीकरण इस प्रकार है:
दो बिंदु रूप –
यह रूप दो बिंदुओं -और से होकर गुजरने वाली रेखा के बिंदु-ढलान का एक और स्पष्टीकरण है:
ढलान अंत: खंड रूप –
रेखा का ढलान-अंत: खंड रूप है। यहाँ, '' रेखा का ढलान है, और '' रेखा का -अंत: खंड है। यह रेखा -अक्ष को बिंदु पर काटती है, जहाँ मूल बिंदु से -अक्ष पर इस बिंदु की दूरी है।
ढलान-अंत: खंड रूप एक महत्वपूर्ण रूप है और गणित के विभिन्न विषयों में इसके बहुत अच्छे अनुप्रयोग हैं।
अंत: खंड रूप –
इस रूप में रेखा का समीकरण -अंत: खंड और -अंत: खंड से बनता है। रेखा -अक्ष को एक बिंदु पर काटती है, और -अक्ष को एक बिंदु पर काटती है, और मूल बिंदु से इन बिंदुओं की क्रमशः दूरी है। जबकि इन दो बिंदुओं को दो-बिंदु रूप में प्रतिस्थापित किया जा सकता है और रेखा के समीकरण के इस अंत: खंड रूप को प्राप्त करने के लिए सरलीकृत किया जा सकता है।
रेखा के समीकरण का अंत: खंड रूप उस दूरी को स्पष्ट करता है जिस पर रेखा -अक्ष और -अक्ष को मूल बिंदु से काटती है।
सामान्य रूप -
सामान्य रूप दी गई रेखा के लंबवत रेखा पर आधारित होता है, जो मूल बिंदु से होकर गुजरती है, और इसे सामान्य के रूप में जाना जाता है।
यहाँ, सामान्य की लंबाई के पैरामीटर '' हैं और इस सामान्य द्वारा धनात्मक -अक्ष के साथ बनाया गया कोण '' है जो एक रेखा के समीकरण को बनाने के लिए उपयोगी है। रेखा के समीकरण का सामान्य रूप इस प्रकार है: