वास्तविक संख्याएँ और उनके दशमलव प्रसार: Difference between revisions

From Vidyalayawiki

No edit summary
(content added)
Line 1: Line 1:
वास्तविक संख्या <math>\frac{1}{7} , \frac{10}{3} , \frac{7}{8}</math> के लिए दशमलव प्रसार नीचे समझाया गया है।
{| class="wikitable"
{| class="wikitable"
|+
|+
Line 10: Line 11:
| rowspan="15" |
| rowspan="15" |
|
|
| colspan="5" style="border-bottom: solid 5px blue"|3.3333...
| colspan="5" style="border-bottom: solid 5px blue" |3.3333...
| rowspan="15" |
| rowspan="15" |
|
|
| colspan="4" style="border-bottom: solid 5px blue"|0.875
| colspan="4" style="border-bottom: solid 5px blue" |0.875
|-
|-
| rowspan="13" style="border-right: solid 5px blue; vertical-align:top" |7
| rowspan="13" style="border-right: solid 5px blue; vertical-align:top" |7
Line 22: Line 23:
|1
|1
|0
|0
| colspan="3" rowspan="2" |
| colspan="3" rowspan="2" |
| rowspan="7" style="border-right: solid 5px blue; vertical-align:top" |8
| rowspan="7" style="border-right: solid 5px blue; vertical-align:top" |8
|7
|7
Line 89: Line 90:
|
|
|9
|9
| colspan="5" rowspan="7" |Reminders: 6,4,0.
| colspan="5" rowspan="7" |शेष: 6,4,0.


Divisor: 8
भाजक: 8
|-
|-
| rowspan="5" |
| rowspan="5" |
Line 102: Line 103:
|3
|3
|5
|5
| colspan="6" rowspan="5" |Reminders: 1,1,1,1...
| colspan="6" rowspan="5" |शेष: 1,1,1,1...


Divisor: 3
भाजक: 3
|-
|-
| rowspan="3" |
| rowspan="3" |
Line 116: Line 117:
|1
|1
|-
|-
| colspan="8" |Reminders: 3,2,6,4,5,1,3,2,6,4,5,1...
| colspan="8" |शेष: 3,2,6,4,5,1,3,2,6,4,5,1...
Divisor: 7
भाजक: 7
|}
|}
In the above division operation
In the above division operation

Revision as of 08:18, 7 May 2024

वास्तविक संख्या के लिए दशमलव प्रसार नीचे समझाया गया है।

0.142857..... 3.3333... 0.875
7 1 0 3 1 0 8 7 0
7 9 6 4

3

0 1 0 6 0
2

8

9 5 6

2

0 1 0 4 0
1 4 9 4 0

6

0 1 0 0
5

6

9 शेष: 6,4,0.

भाजक: 8

4 0 1
3 5 शेष: 1,1,1,1...

भाजक: 3

5 0
4 9
1
शेष: 3,2,6,4,5,1,3,2,6,4,5,1...

भाजक: 7

In the above division operation

  • The remainders either become after some stage, or start repeating themselves.
  • The number of entries in the repeating string of remainders is less than the divisor (in , one number repeats itself and the divisor is , in there are six entries in the repeating string of remainders and the divisor is )
  • If the remainders repeat, then we get a repeating block of digits in the quotient (for , repeats in the quotient and for , repeating block in the quotient)

The above pattern using the examples above is true for all rationals of the form ().

On division of by , two main things happen – either the remainder becomes zero or never becomes zero and we get a repeating string of remainders.

The decimal expansion of real numbers can be classified into three types. They are: