गुणनखंडन: Difference between revisions
Ramamurthy (talk | contribs) |
No edit summary |
||
| Line 3: | Line 3: | ||
[[Category:गणित]] | [[Category:गणित]] | ||
[[Category:कक्षा-9]] | [[Category:कक्षा-9]] | ||
== What is Factorisation? == | |||
When we break a number or a polynomial into a product of many factors of other polynomials, which, when multiplied, gives the original number, it is called factorisation. | |||
To factorise a number, we use the factorisation formula. The factorisation is the process of converting one entity (for example, a number, or a polynomial) into a product of another entity, or factors, which, when multiplied together, yield the original number. | |||
The factorisation formula divides a large number into smaller numbers, known as factors. A factor is a number that divides a given integer completely without leaving any remainder. | |||
For example - Prime Factorisation of <math>28 = 2 \times 2 \times 7 </math> and | |||
Before starting factorisation, let us know the term, ‘Factor’. | |||
What is a Factor? | |||
Factors are the numbers, algebraic variables or an algebraic expression which divides the number or an algebraic expression without leaving any remainder. | |||
For example factor of <math>9 </math> is <math>1,3,9 </math> | |||
== What is Factorization Formula? == | |||
The factorization formula factorizes a number quickly into smaller numbers or factors of the number. A factor is a number that divides the given number without any remainder. The factorization formula of a given value can be expressed as, | |||
<math>N = x^a\times y^b \times z^c </math> | |||
where, | |||
* <math>N </math>= Any number | |||
* <math>x,y,z </math> = Factors of number <math>N </math> | |||
* <math>a,b,c </math> = exponents of factors <math>x,y,z </math> respectively. | |||
== List of Factorization Formulas for Algebraic Equation == | |||
There are many algebraic identities that help us in the factorization of algebraic expressions and the factorization of quadratic equations. Here are listed a few. | |||
* <math>(a+b)^2 = a^2+2ab+b^2 </math> | |||
* <math>(a-b)^2 = a^2-2ab+b^2 </math> | |||
* <math>(a+b)^3 = a^3+3ab(a+b)+b^3 </math> | |||
* <math>(a+b)^3 = a^3-3ab(a-b)-b^3 </math> | |||
* <math>a^2-b^2 = (a+b)(a-b) </math> | |||
== Examples == | |||
# Ram wants to factorize number <math>40 </math>. What the prime factorization of <math>40 </math>? Solve it by using the factorization formula. | |||
'''Solution:''' | |||
To find: Prime factorization of <math>40 </math>. | |||
Using Factorization Formula, | |||
Factorization Formula for any number, | |||
<math>N = x^a\times y^b \times z^c </math> | |||
<math>40 = 2\times 2\times 2 \times 5 </math> | |||
<math>40 = 2^3\times 5 </math> | |||
Prime factorization of <math>40 </math> = <math>2^3\times 5 </math> | |||
2. Factorize <math>a^2-625 </math> | |||
'''Solution:''' | |||
<math>a^2-625=a^2-25^2 </math> | |||
Using the known identity, we can factorize this polynomial | |||
<math>a^2-25^2 </math> is of the form <math>a^2-b^2 </math> | |||
We know that <math>a^2-b^2 = (a+b)(a-b) </math> | |||
Thus we factorize the polynomial as <math>(a+25)(a-25) </math> | |||
== गुणनखंडन या गुणनखंडीकरण क्या है? == | == गुणनखंडन या गुणनखंडीकरण क्या है? == | ||
जब हम किसी संख्या या बहुपद को अन्य बहुपदों के कई गुणनखंडों के गुणनफल में विभाजित करते हैं, जिसे गुणा करने पर मूल संख्या प्राप्त होती है, तो इसे गुणनखंडन कहा जाता है। | जब हम किसी संख्या या बहुपद को अन्य बहुपदों के कई गुणनखंडों के गुणनफल में विभाजित करते हैं, जिसे गुणा करने पर मूल संख्या प्राप्त होती है, तो इसे गुणनखंडन कहा जाता है। | ||
Revision as of 08:19, 2 November 2024
What is Factorisation?
When we break a number or a polynomial into a product of many factors of other polynomials, which, when multiplied, gives the original number, it is called factorisation.
To factorise a number, we use the factorisation formula. The factorisation is the process of converting one entity (for example, a number, or a polynomial) into a product of another entity, or factors, which, when multiplied together, yield the original number.
The factorisation formula divides a large number into smaller numbers, known as factors. A factor is a number that divides a given integer completely without leaving any remainder.
For example - Prime Factorisation of and
Before starting factorisation, let us know the term, ‘Factor’.
What is a Factor?
Factors are the numbers, algebraic variables or an algebraic expression which divides the number or an algebraic expression without leaving any remainder.
For example factor of is
What is Factorization Formula?
The factorization formula factorizes a number quickly into smaller numbers or factors of the number. A factor is a number that divides the given number without any remainder. The factorization formula of a given value can be expressed as,
where,
- = Any number
- = Factors of number
- = exponents of factors respectively.
List of Factorization Formulas for Algebraic Equation
There are many algebraic identities that help us in the factorization of algebraic expressions and the factorization of quadratic equations. Here are listed a few.
Examples
- Ram wants to factorize number . What the prime factorization of ? Solve it by using the factorization formula.
Solution:
To find: Prime factorization of .
Using Factorization Formula,
Factorization Formula for any number,
Prime factorization of =
2. Factorize
Solution:
Using the known identity, we can factorize this polynomial
is of the form
We know that
Thus we factorize the polynomial as
गुणनखंडन या गुणनखंडीकरण क्या है?
जब हम किसी संख्या या बहुपद को अन्य बहुपदों के कई गुणनखंडों के गुणनफल में विभाजित करते हैं, जिसे गुणा करने पर मूल संख्या प्राप्त होती है, तो इसे गुणनखंडन कहा जाता है।
किसी संख्या का गुणनखंड करने के लिए, हम गुणनखंडन सूत्र का उपयोग करते हैं। गुणनखंडन एक इकाई (उदाहरण के लिए, एक संख्या, या एक बहुपद) को किसी अन्य इकाई या गुणक के गुणनफल में परिवर्तित करने की प्रक्रिया है, जिसे एक साथ गुणा करने पर मूल संख्या प्राप्त होती है।
गुणनखंडन सूत्र बड़ी संख्या को छोटी संख्याओं में विभाजित करता है, जिन्हें गुणनखंड कहा जाता है। गुणनखंड वह संख्या है जो किसी दिए गए पूर्णांक को बिना कोई शेष छोड़े पूर्णतः विभाजित कर देती है।
उदाहरण के लिए - का अभाज्य गुणनखंडन और
गुणनखंडन आरंभ करने से पहले, आइए 'गुणनखंड' शब्द को जान लें।
गुणनखंड क्या है?
गुणनखंड संख्याएँ, बीजगणितीय चर, या बीजगणितीय व्यंजक हैं जो संख्या या बीजीय व्यंजक को बिना कोई शेष छोड़े विभाजित करते हैं।
उदाहरण के लिए का एक गुणनखंड है