प्रतिलोम त्रिकोणमितीय फलनों के गुणधर्म: Difference between revisions

From Vidyalayawiki

(formulas)
(added internal links)
 
Line 2: Line 2:


== परिचय ==
== परिचय ==
प्रतिलोम त्रिकोणमितीय फलन, सीखने के विषय के रूप में, मूल त्रिकोणमितीय फलनों से निकटता से संबंधित हैं। त्रिकोणमितीय फलनों के प्रांत और परिसर को प्रतिलोम त्रिकोणमितीय फलनों की परिसर और प्रांत में परिवर्तित किया जाता है। त्रिकोणमिति में, हम समकोण त्रिभुज में कोणों और भुजाओं के बीच संबंधों के बारे में सीखते हैं। इसी तरह, हमारे पास प्रतिलोम त्रिकोणमितीय फलन हैं। मूल त्रिकोणमितीय फलन <math>sin, cos, tan, cosec, sec</math> और <math>cot</math> हैं। दूसरी ओर प्रतिलोम त्रिकोणमितीय फलनों को <math>sin^{-1}x, cos^{-1}x, cot^{-1} x, tan^{-1} x, cosec^{-1} x</math> और <math>sec^{-1} x</math> के रूप में दर्शाया जाता है। प्रतिलोम त्रिकोणमितीय फलनों में मूल त्रिकोणमितीय फलनों के सभी सूत्र होते हैं, जिसमें फलनों का योग, फलन का दुगुना और तिगुना उपस्थित होता है। यहाँ हम त्रिकोणमितीय सूत्रों को प्रतिलोम त्रिकोणमितीय सूत्रों में बदलने को समझने का प्रयास करेंगे।
प्रतिलोम त्रिकोणमितीय फलन, सीखने के विषय के रूप में, मूल त्रिकोणमितीय फलनों से निकटता से संबंधित हैं। [[त्रिकोणमितीय फलन|त्रिकोणमितीय फलनों]] के प्रांत और परिसर को प्रतिलोम त्रिकोणमितीय फलनों की परिसर और प्रांत में परिवर्तित किया जाता है। त्रिकोणमिति में, हम समकोण त्रिभुज में कोणों और भुजाओं के बीच संबंधों के बारे में सीखते हैं। इसी तरह, हमारे पास प्रतिलोम त्रिकोणमितीय फलन हैं। मूल त्रिकोणमितीय फलन <math>sin, cos, tan, cosec, sec</math> और <math>cot</math> हैं। दूसरी ओर प्रतिलोम त्रिकोणमितीय फलनों को <math>sin^{-1}x, cos^{-1}x, cot^{-1} x, tan^{-1} x, cosec^{-1} x</math> और <math>sec^{-1} x</math> के रूप में दर्शाया जाता है। प्रतिलोम त्रिकोणमितीय फलनों में मूल त्रिकोणमितीय फलनों के सभी सूत्र होते हैं, जिसमें फलनों का योग, फलन का दुगुना और तिगुना उपस्थित होता है। यहाँ हम त्रिकोणमितीय सूत्रों को प्रतिलोम त्रिकोणमितीय सूत्रों में बदलने को समझने का प्रयास करेंगे।


== प्रतिलोम त्रिकोणमितीय फलनों के गुणधर्म ==
== प्रतिलोम त्रिकोणमितीय फलनों के गुणधर्म ==
Line 121: Line 121:
गणित की वह शाखा जो कोणों और भुजाओं से संबंधित है, उसे त्रिकोणमिति कहते हैं।
गणित की वह शाखा जो कोणों और भुजाओं से संबंधित है, उसे त्रिकोणमिति कहते हैं।


प्रतिलोम त्रिकोणमिति की अवधारणा त्रिकोणमितीय कार्यों के प्रतिलोम फलनों से संबंधित है। इसलिए, प्रतिलोम त्रिकोणमितीय कार्य प्रतिलोम कोटैंजेंट, प्रतिलोम कोसेकेंट, प्रतिलोम साइन, प्रतिलोम स्पर्शज्या, प्रतिलोम सेकेंट और प्रतिलोम कोसाइन हैं।
प्रतिलोम त्रिकोणमिति की अवधारणा त्रिकोणमितीय कार्यों के प्रतिलोम [[फलनों के प्रकार|फलनों]] से संबंधित है। इसलिए, प्रतिलोम त्रिकोणमितीय कार्य प्रतिलोम कोटैंजेंट, प्रतिलोम कोसेकेंट, प्रतिलोम साइन, प्रतिलोम स्पर्शज्या, प्रतिलोम सेकेंट और प्रतिलोम कोसाइन हैं।


जब समकोण त्रिभुज की केवल दो भुजाएँ ज्ञात हों, तो प्रतिलोम त्रिकोणमितीय फलन कोण माप निर्धारित करते हैं। प्रतिलोम त्रिकोणमितीय फलनों की अवधारणा का उपयोग साधारणतः  भौतिकी, ज्यामिति, इंजीनियरिंग आदि में किया जाता है। प्रतिलोम त्रिकोणमितीय फलनों को त्रिकोणमितीय-विरोधी फलन या आर्कस फलन के रूप में भी जाना जाता है।
जब समकोण त्रिभुज की केवल दो भुजाएँ ज्ञात हों, तो प्रतिलोम त्रिकोणमितीय फलन कोण माप निर्धारित करते हैं। प्रतिलोम त्रिकोणमितीय फलनों की अवधारणा का उपयोग साधारणतः  भौतिकी, ज्यामिति, इंजीनियरिंग आदि में किया जाता है। प्रतिलोम त्रिकोणमितीय फलनों को त्रिकोणमितीय-विरोधी फलन या आर्कस फलन के रूप में भी जाना जाता है।

Latest revision as of 19:24, 27 November 2024

गणित की वह शाखा जो कोणों और भुजाओं से संबंधित है, उसे त्रिकोणमिति कहते हैं।

परिचय

प्रतिलोम त्रिकोणमितीय फलन, सीखने के विषय के रूप में, मूल त्रिकोणमितीय फलनों से निकटता से संबंधित हैं। त्रिकोणमितीय फलनों के प्रांत और परिसर को प्रतिलोम त्रिकोणमितीय फलनों की परिसर और प्रांत में परिवर्तित किया जाता है। त्रिकोणमिति में, हम समकोण त्रिभुज में कोणों और भुजाओं के बीच संबंधों के बारे में सीखते हैं। इसी तरह, हमारे पास प्रतिलोम त्रिकोणमितीय फलन हैं। मूल त्रिकोणमितीय फलन और हैं। दूसरी ओर प्रतिलोम त्रिकोणमितीय फलनों को और के रूप में दर्शाया जाता है। प्रतिलोम त्रिकोणमितीय फलनों में मूल त्रिकोणमितीय फलनों के सभी सूत्र होते हैं, जिसमें फलनों का योग, फलन का दुगुना और तिगुना उपस्थित होता है। यहाँ हम त्रिकोणमितीय सूत्रों को प्रतिलोम त्रिकोणमितीय सूत्रों में बदलने को समझने का प्रयास करेंगे।

प्रतिलोम त्रिकोणमितीय फलनों के गुणधर्म

निम्नलिखित प्रतिलोम त्रिकोणमितीय पहचानों और प्रतिलोम त्रिकोणमितीय सूत्रों की सूची है।

प्रतिलोम त्रिकोणमितीय फलनों का पहला गुण

सम्भवतः या तो से बड़ा या बराबर हो और से छोटा या बराबर हो।

सम्भवतः या तो से बड़ा या बराबर हो और से छोटा या बराबर हो।

सम्भवतः या तो शून्य से बड़ा हो।

अब, आइए पहला गुण सिद्ध करें।

माना

इसलिए,

इसलिए, या,

प्रतिलोम त्रिकोणमितीय फलनों का दूसरा गुण

के सभी मानों के लिए जो से 1 की सीमा में हैं।

जहाँ

अब, आइए एक उदाहरण की सहायता से दूसरे गुण को सिद्ध करें।

मान लें

फिर,

इसलिए,

का मान समीकरण से बदलें)

प्रतिलोम त्रिकोणमितीय फलनों का तीसरा गुण

जहाँ , से की सीमा में आता है।

अब आइए तीसरा गुण सिद्ध करें।

मान लीजिए

– x = cot y

ताकि

इसलिए,

इसलिए

प्रतिलोम त्रिकोणमितीय फलनों का चौथा गुण

से की सीमा के भीतर आने वाले सभी के लिए।

जहाँ

अब, आइए चौथे गुण को सिद्ध करें।

मान लीजिए

फिर,

इसलिए,

प्रतिलोम त्रिकोणमितीय फलनों का पाँचवाँ गुण

यदि

यदि

प्रतिलोम त्रिकोणमितीय फलनों का छठा गुण

यदि या तो से बड़ा है या से छोटा है।

उदाहरण

प्रश्न - सिद्ध कीजिये " "

उत्तर- मान लीजिए,

तो

अत:

निष्कर्ष

गणित की वह शाखा जो कोणों और भुजाओं से संबंधित है, उसे त्रिकोणमिति कहते हैं।

प्रतिलोम त्रिकोणमिति की अवधारणा त्रिकोणमितीय कार्यों के प्रतिलोम फलनों से संबंधित है। इसलिए, प्रतिलोम त्रिकोणमितीय कार्य प्रतिलोम कोटैंजेंट, प्रतिलोम कोसेकेंट, प्रतिलोम साइन, प्रतिलोम स्पर्शज्या, प्रतिलोम सेकेंट और प्रतिलोम कोसाइन हैं।

जब समकोण त्रिभुज की केवल दो भुजाएँ ज्ञात हों, तो प्रतिलोम त्रिकोणमितीय फलन कोण माप निर्धारित करते हैं। प्रतिलोम त्रिकोणमितीय फलनों की अवधारणा का उपयोग साधारणतः भौतिकी, ज्यामिति, इंजीनियरिंग आदि में किया जाता है। प्रतिलोम त्रिकोणमितीय फलनों को त्रिकोणमितीय-विरोधी फलन या आर्कस फलन के रूप में भी जाना जाता है।