AP का nवाँ पद: Difference between revisions

From Vidyalayawiki

Line 33: Line 33:
=== <u>उदाहरण 1:</u> - ===
=== <u>उदाहरण 1:</u> - ===


=== 1) समान्तर श्रेढ़ी 12, 18, 24, 30, 36 ………… .. का 9 वां पद ज्ञात कीजिये। ===
==== 1) समान्तर श्रेढ़ी 12, 18, 24, 30, 36 ………… .. का 9 वां पद ज्ञात कीजिये। ====
हल –  यहाँ, पहला पद (a)  first term = 12,
हल –  यहाँ, पहला पद (a)  first term = 12,


Line 54: Line 54:
=== <u>उदाहरण 2 :-</u> ===
=== <u>उदाहरण 2 :-</u> ===


=== समान्तर श्रेढ़ी  8, 12, 16 ……… .. का कौन सा पद 400 है? ===
==== समान्तर श्रेढ़ी  8, 12, 16 ……… .. का कौन सा पद 400 है? ====
हल –
हल –



Revision as of 14:33, 11 September 2023

इस इकाई को शुरू करने के पूर्व आइए हम जानते हैं कि अर्थमैटिक प्रोग्रेशन ( arithmetic progression) अर्थात समांतर श्रेढ़ी का क्या मतलब होता है?

परिभाषा

संख्याओं का एक क्रम या श्रृंखला , जिसमें दो क्रमागत संख्याओं ( consecutive terms) के बीच का सार्व अंतर (common difference) स्थिर ( constant) रहता है,ऐसी क्रम या श्रृंखला को हम समांतर श्रेढ़ी कहते हैं ।

उदाहरण –

1. 1 ,3, 5, 7 ,9, 11 …….

2.    2, 4, 6, 8, 10, 12 …….

3.    5, 3, 1, -1, -3, -5 ……..

4.   9.25, 9.35, 9.45, 9.55, 9.65…….

उपर्युक्त उदाहरणों में, प्रत्येक अगला पद पूर्ववर्ती पद में एक निश्चित संख्या जोड़कर प्राप्त किया गया है। उपर्युक्त उदाहरणों में दो क्रमागत पदों का अंतर नियत (constant) है ,अतः यह  समांतर श्रेढ़ी का उदाहरण है।

समान्तर श्रेढ़ी का n वाँ पद (nth Term of Arithmetic Progression) -

इसे ज्ञात करने के लिए हम सार्व अंतर d अर्थात ( common difference) को (n – 1) से गुणा करेंगे और फिर पहले पद अर्थात a( first term) में जोड़ेंगे ।

समांतर श्रेढ़ी के n वाँ पद का सूत्र ( Formula for nth term of an AP)

an = a + (n – 1)d

यहाँ, an = n वाँ पद

a = पहला पद अर्थात first term.

n = पदों की संख्या अर्थात number of terms.

d = सार्व अंतर अर्थात common difference.

उदाहरण 1: -

1) समान्तर श्रेढ़ी 12, 18, 24, 30, 36 ………… .. का 9 वां पद ज्ञात कीजिये।

हल – यहाँ, पहला पद (a) first term = 12,

सार्व अंतर (d) common difference = 18-12 = 6

पदों की संख्या (n) = 9,     9 वां पद (a9) =?

n वाँ पद के सूत्र द्वारा,   an = a + (n – 1)d

a9 = 12 + (9 – 1)6

a9 = 12 + (8)6 = 12 + 48

a9 =60

अर्थात , दी गई समान्तर श्रेढ़ी का 9वां पद 60 है।           

                               

उदाहरण 2 :-

समान्तर श्रेढ़ी 8, 12, 16 ……… .. का कौन सा पद 400 है?

हल –

प्रथम पद (a) first term = 4,

सार्व अंतर (d) common difference = 12- 8 = 4

n वाँ पद (an) = 400, पदों की संख्या (n) =?

सूत्र ,    an = a + (n – 1)d

400= 8 + (n – 1)4

400 – 8 = 4n – 4

392 = 4n – 4

392 + 4 = 4n

4n = 396

n = 396/4

n = 99

अर्थात, दी गई समांतर श्रेढ़ी में कुल 99 पद हैं ।

अभ्यास प्रश्न:-

1. समांतर श्रेढ़ी 2, 7 ,12 ...... का दसवां पद क्या होगा?

2. समांतर श्रेढ़ी 21, 18, 15 .......का कौन सा पद - 87 होगा?