अपरिमेय संख्याओं का पुनर्भ्रमण: Difference between revisions
Jaya agarwal (talk | contribs) |
Jaya agarwal (talk | contribs) |
||
| Line 5: | Line 5: | ||
उदाहरण : <math>\sqrt{2}</math> , <math>\sqrt{3}</math> , <math>\sqrt{7}</math> , <math>\pi</math> , <math>0.10110111011110.....</math> आदि अपरिमेय संख्याओं के उदाहरण हैं । | उदाहरण : <math>\sqrt{2}</math> , <math>\sqrt{3}</math> , <math>\sqrt{7}</math> , <math>\pi</math> , <math>0.10110111011110.....</math> आदि अपरिमेय संख्याओं के उदाहरण हैं । | ||
इस इकाई में हम सिद्ध करेंगे कि <math>\sqrt{p}</math> अपरिमेय संख्या है , जहाँ <math>p</math> एक [[अभाज्य संख्याएँ|अभाज्य संख्या]] है। हम अपने प्रमाण में [[अंकगणित की आधारभूत प्रमेय|अंकगणित की मौलिक प्रमेय]] का उपयोग करेंगे । इससे पूर्व हमें | इस इकाई में हम सिद्ध करेंगे कि <math>\sqrt{p}</math> अपरिमेय संख्या है , जहाँ <math>p</math> एक [[अभाज्य संख्याएँ|अभाज्य संख्या]] है। हम अपने प्रमाण में [[अंकगणित की आधारभूत प्रमेय|अंकगणित की मौलिक प्रमेय]] का उपयोग करेंगे । इससे पूर्व हमें प्रमेय की आवश्यकता होगी आइए उसके बारे में जानते हैं । | ||
== प्रेमय 1 == | == प्रेमय 1 == | ||
Revision as of 08:46, 5 October 2023
एक संख्या को अपरिमेय संख्या कहा जाता है , यदि हम इसे के रूप में व्यक्त नहीं कर सकते हैं , जहाँ और पूर्णांक हैं और हैं ।
उदाहरण : , , , , आदि अपरिमेय संख्याओं के उदाहरण हैं ।
इस इकाई में हम सिद्ध करेंगे कि अपरिमेय संख्या है , जहाँ एक अभाज्य संख्या है। हम अपने प्रमाण में अंकगणित की मौलिक प्रमेय का उपयोग करेंगे । इससे पूर्व हमें प्रमेय की आवश्यकता होगी आइए उसके बारे में जानते हैं ।
प्रेमय 1
कथन : माना कि एक अभाज्य संख्या है, यदि , को विभाजित करता है , तो , को भी विभाजित करता है, जहाँ एक धनात्मक पूर्णांक है ।[1]
प्रमाण :
मान लीजिए कि का अभाज्य गुणनखंडन इस प्रकार है ,
जहाँ अभाज्य संख्याएँ है ।
इस प्रकार हम कह सकते हैं कि ,
कथन में हमें दिया गया है कि, को विभाजित करता है, इसलिए अंकगणित की मौलिक प्रमेय से यह निष्कर्ष निकलता है कि , के अभाज्य गुणनखंडों में से एक है हालाँकि अंकगणित के मौलिक प्रमेय के विशिष्ट भाग का उपयोग करते हुए हम कह सकते हैं कि ; के अभाज्य गुणनखंड है तो , का मान इनमें से एक है ।
इस तरह , ;
अतः , को विभाजित करता है ।
उदाहरण 1
सिद्ध करें कि एक अपरिमेय संख्या है ।
हल
आइए, इसके विपरीत मान लें कि एक परिमेय संख्या है । अतः , परिमेय संख्या की परिभाषा अनुसार हम कह सकते हैं कि :
जहाँ, और पूर्णांक हैं और हैं ।
मान लीजिए कि और में के अलावा कोई अन्य उभयनिष्ठ गुणनखंड है, तो हम उभयनिष्ठ गुणनखंड से भाग दे सकते हैं, और मान सकते हैं , कि और सहअभाज्य हैं । अतः ,
दोनों तरफ वर्ग करके पुनर्व्यवस्थित रूप में लिखने पर ,
उपर्युक्त दिए गए समीकरण से यह स्पष्ट है कि ; , से विभाज्य है , अतः प्रमेय ( यदि , को विभाजित करता है , तो , को भी विभाजित करता है, जहाँ एक धनात्मक पूर्णांक है ) के उपयोग से हम कह सकते हैं कि भी से विभाज्य होगा ।
अब, हम कह सकते हैं ,
जहाँ, पूर्णांक हैं ।
दोनों तरफ वर्ग करके लिखने पर ,
समीकरण से का मान रखने पर ,
दोनों पक्षों में से भाग देने पर ,
अतः , यह स्पष्ट है कि , से विभाज्य है , प्रमेय ( यदि , को विभाजित करता है , तो , को भी विभाजित करता है, जहाँ एक धनात्मक पूर्णांक है ) के उपयोग से हम कह सकते हैं कि , से भी विभाज्य हैं ।
इसलिए यह स्पष्ट है कि और का उभयनिष्ठ गुणनखंड हैं , लेकिन यह इस तथ्य का खंडन करता है कि और में के अलावा कोई उभयनिष्ठ गुणनखंड नहीं है। यह विरोधाभास हमारी गलत धारणा के कारण उत्पन्न हुआ है कि एक परिमेय संख्या है ।
अतः , हम यह निष्कर्ष निकालते हैं कि अपरिमेय संख्या है ।
उदाहरण 2
सिद्ध करें कि एक अपरिमेय संख्या है ।
हल
आइए, इसके विपरीत मान लें कि एक परिमेय संख्या है । अतः , परिमेय संख्या की परिभाषा अनुसार हम कह सकते हैं कि :
जहाँ, और पूर्णांक हैं और हैं ।
पुनर्व्यवस्थित रूप में लिखने पर ,
चूँकि , और पूर्णांक हैं ; अतः , यह स्पष्ट है कि एक परिमेय संख्या है और इसलिए एक परिमेय संख्या है । लेकिन यह इस तथ्य का खंडन करता है कि अपरिमेय संख्या है। यह विरोधाभास हमारी ग़लत धारणा के कारण उत्पन्न हुआ है कि एक परिमेय संख्या है ।
अतः , हम यह निष्कर्ष निकालते हैं कि अपरिमेय संख्या है ।
अभ्यास प्रश्न
- सिद्ध करें कि एक अपरिमेय संख्या है ।
- सिद्ध करें कि एक अपरिमेय संख्या है ।
संदर्भ
- ↑ MATHEMATICS ( NCERT0 (Revised ed.). pp. 6–9.