विलोपन विधि: Difference between revisions

From Vidyalayawiki

No edit summary
No edit summary
Line 1: Line 1:


[[Category:दो चर वाले रैखिक समीकरण युग्म]][[Category:गणित]][[Category:कक्षा-10]]
[[Category:दो चर वाले रैखिक समीकरण युग्म]][[Category:गणित]][[Category:कक्षा-10]]
Elimination Method
दो चर वाले रैखिक समीकरण युग्म को हल करने के विभिन्न तरीके हैं । इन्हें हल करने का सबसे आसान तरीका विलोपन विधि  है । समीकरण को एक चर में प्राप्त करने के लिए हम समीकरण को जोड़ते या घटाते हैं। यदि किसी एक चर के गुणांक समान है और गुणांक के चिन्ह विपरीत है तो हम चर को हटाने के लिए समीकरण को जोड़ते हैं तथा इसी प्रकार यदि किसी एक चर के गुणांक समान है और गुणांक के चिन्ह भी समान है , तो  हम समीकरणों को घटा सकते हैं । यदि समीकरणो में चर के गुणांक असमान हो तो हम किसी स्थिरांक से समीकरण के दोनों पक्षों को गुणा करते हैं और उसके बाद चरो का विलोपन करते हैं ।  आइए इस इकाई में हम विलोपन विधि को विस्तार पूर्वक समझते है ।
 
== विलोपन विधि के मुख्य चरण ==
विलोपन विधि के मुख्य चरण निम्नलिखित है ;
 
=== चरण 1 ===
सबसे पहले , हम किसी भी एक चर (या तो <math>x</math> या <math>y</math>) के गुणांक को संख्यात्मक रूप से बराबर करने के लिए दिए गए दोनों समीकरणों को उपयुक्त स्थिरांक से गुणा करते हैं ।
 
=== चरण 2 ===
उसके बाद , हम एक समीकरण को दूसरे में इस प्रकार जोड़ते या घटाते हैं कि एक चर विलुप्त हो जाए । यदि हमें एक चक्र में समीकरण प्राप्त हो जाता है तो हम तृतीय चरण की तरफ बढ़ेंगे । यदि चरण 2 में हमें एक सत्य कथन प्राप्त होता है जिसमें कोई चर नहीं है , तो मूल समीकरण युग्म के अपरिमित रूप से अनेक हल होते हैं । यदि चरण 2 में हमें कोई गलत कथन प्राप्त होता है जिसमें कोई चर नहीं है , तो मूल समीकरण युग्म का कोई हल नहीं है , अर्थात यह समीकरण युग्म असंगत है ।
 
=== चरण 3 ===
हम चर का मान प्राप्त करने के लिए चरण 2 में प्राप्त एक चर वाले समीकरण को हल करेंगे ।
 
=== चरण 4 ===
चरण 3 में प्राप्त चर के मान को हम किसी भी एक समीकरण में रखकर दूसरे चर का मान प्राप्त कर सकते हैं ।
 
इस प्रकार ऊपर दिए गए चरणों को क्रमबद्ध तरीके से उपयोग करने के बाद हम दो चर वाले रैखिक समीकरण को हल करने में सक्षम होंगे ।
 
== उदाहरण 1 ==
विलोपन विधि का उपयोग करके दो चर वाले निम्नलिखित समीकरण युग्म को हल करें :
 
<math>2x+3y=8</math>
 
<math>4x+6y=7</math>
 
हल
 
दी गई  समीकरण ,
 
<math>2x+3y=8</math> <math>....................(1)</math>
 
<math>4x+6y=7</math> <math>......................(2)</math>
 
<math>x</math> का गुणांक बराबर बनाने के लिए हम समीकरण <math>(1)</math> को <math>2</math> से और समीकरण <math>(2)</math> को <math>1</math> से गुणा करेंगे ,
 
<math>2 \times(2x+3y=8)</math>
 
<math>1 \times(4x+6y=7)</math>
 
<math>4x+6y=16</math><math>....................(3)</math>
 
<math>4x+6y=7</math><math>......................(4)</math>
 
समीकरण <math>(3)</math> से समीकरण <math>(4)</math> को घटाने पर ,
 
<math>(4x+6y)-(4x-6y)=16-7</math>
 
<math>(4x-4x)+(6y-6y)=16-7</math>
 
<math>0=9</math> जो एक गलत कथन है ।
 
इसलिए , दिए गए समीकरण युग्म का कोई हल नहीं है ।
 
== उदाहरण 2 ==
विलोपन विधि का उपयोग करके दो चर वाले निम्नलिखित समीकरण युग्म को हल करें :
 
<math>x+y=5</math>
 
<math>2x-3y=5</math>

Revision as of 12:20, 6 October 2023

दो चर वाले रैखिक समीकरण युग्म को हल करने के विभिन्न तरीके हैं । इन्हें हल करने का सबसे आसान तरीका विलोपन विधि है । समीकरण को एक चर में प्राप्त करने के लिए हम समीकरण को जोड़ते या घटाते हैं। यदि किसी एक चर के गुणांक समान है और गुणांक के चिन्ह विपरीत है तो हम चर को हटाने के लिए समीकरण को जोड़ते हैं तथा इसी प्रकार यदि किसी एक चर के गुणांक समान है और गुणांक के चिन्ह भी समान है , तो हम समीकरणों को घटा सकते हैं । यदि समीकरणो में चर के गुणांक असमान हो तो हम किसी स्थिरांक से समीकरण के दोनों पक्षों को गुणा करते हैं और उसके बाद चरो का विलोपन करते हैं । आइए इस इकाई में हम विलोपन विधि को विस्तार पूर्वक समझते है ।

विलोपन विधि के मुख्य चरण

विलोपन विधि के मुख्य चरण निम्नलिखित है ;

चरण 1

सबसे पहले , हम किसी भी एक चर (या तो या ) के गुणांक को संख्यात्मक रूप से बराबर करने के लिए दिए गए दोनों समीकरणों को उपयुक्त स्थिरांक से गुणा करते हैं ।

चरण 2

उसके बाद , हम एक समीकरण को दूसरे में इस प्रकार जोड़ते या घटाते हैं कि एक चर विलुप्त हो जाए । यदि हमें एक चक्र में समीकरण प्राप्त हो जाता है तो हम तृतीय चरण की तरफ बढ़ेंगे । यदि चरण 2 में हमें एक सत्य कथन प्राप्त होता है जिसमें कोई चर नहीं है , तो मूल समीकरण युग्म के अपरिमित रूप से अनेक हल होते हैं । यदि चरण 2 में हमें कोई गलत कथन प्राप्त होता है जिसमें कोई चर नहीं है , तो मूल समीकरण युग्म का कोई हल नहीं है , अर्थात यह समीकरण युग्म असंगत है ।

चरण 3

हम चर का मान प्राप्त करने के लिए चरण 2 में प्राप्त एक चर वाले समीकरण को हल करेंगे ।

चरण 4

चरण 3 में प्राप्त चर के मान को हम किसी भी एक समीकरण में रखकर दूसरे चर का मान प्राप्त कर सकते हैं ।

इस प्रकार ऊपर दिए गए चरणों को क्रमबद्ध तरीके से उपयोग करने के बाद हम दो चर वाले रैखिक समीकरण को हल करने में सक्षम होंगे ।

उदाहरण 1

विलोपन विधि का उपयोग करके दो चर वाले निम्नलिखित समीकरण युग्म को हल करें :

हल

दी गई समीकरण ,

का गुणांक बराबर बनाने के लिए हम समीकरण को से और समीकरण को से गुणा करेंगे ,

समीकरण से समीकरण को घटाने पर ,

जो एक गलत कथन है ।

इसलिए , दिए गए समीकरण युग्म का कोई हल नहीं है ।

उदाहरण 2

विलोपन विधि का उपयोग करके दो चर वाले निम्नलिखित समीकरण युग्म को हल करें :