हर का परिमेयकरण: Difference between revisions
From Vidyalayawiki
(New Mathematics Class 9 Hindi Page Created) |
(added content) |
||
| Line 3: | Line 3: | ||
[[Category:कक्षा-9]][[Category:गणित]] | [[Category:कक्षा-9]][[Category:गणित]] | ||
हम यह सुनिश्चित करने के लिए हर का परिमेयकरण करते हैं कि परिमेय संख्या पर कोई भी गणना करना आसान हो जाए। जब हम किसी भिन्न में हर का परिमेयकरण करते हैं, तो हम हर से वर्गमूल और घनमूल जैसे मूल भावों को हटा देते हैं। | हम यह सुनिश्चित करने के लिए हर का परिमेयकरण करते हैं कि परिमेय संख्या पर कोई भी गणना करना आसान हो जाए। जब हम किसी भिन्न में हर का परिमेयकरण करते हैं, तो हम हर से वर्गमूल और घनमूल जैसे मूल भावों को हटा देते हैं। | ||
== परिभाषा == | |||
परिमेयकरण एक परिमेय संख्या प्राप्त करने के लिए किसी अन्य समान योग से गुणा करने की प्रक्रिया है। गुणा करने के लिए जिस करणी(सर्ड) का उपयोग किया जाता है उसे परिमेयकरण कारक कहा जाता है। | |||
* परिमेयकरण बनाने के लिए <math>\sqrt {x}</math> हमें एक और <math>\sqrt {x}</math> चाहिए, <math>\sqrt {x} \times \sqrt {x} = x</math> । | |||
* <math>a+ \sqrt {b}</math> को परिमेयकरण बनाने के लिए हमें एक परिमेयकरण कारक <math>a- \sqrt {b}</math> की आवश्यकता है, <math>(a+ \sqrt {b}) \times (a- \sqrt {b})= a^2 -(\sqrt {b})^2 = a^2 -b</math> | |||
* <math>2 \sqrt {3 }</math> के परिमेयकरण कारक को परिमेयकरण बनाने के लिए <math>\sqrt {3 }</math> की आवश्यकता है, <math>2 \sqrt {3 }X \sqrt {3 }=2X3=6</math> । | |||
हर का परिमेयकरण का अर्थ | |||
हर का परिमेयकरण का अर्थ है किसी मूल को, उदाहरण के लिए, एक घनमूल या वर्गमूल को भिन्न (हर) के नीचे से भिन्न (अंश) के शीर्ष तक ले जाने की प्रक्रिया। इसके द्वारा हम भिन्न को उसके सरलतम रूप में लाते हैं जिससे हर परिमेय हो जाता है। | |||
== उदाहरण == | |||
Revision as of 09:53, 4 May 2024
हम यह सुनिश्चित करने के लिए हर का परिमेयकरण करते हैं कि परिमेय संख्या पर कोई भी गणना करना आसान हो जाए। जब हम किसी भिन्न में हर का परिमेयकरण करते हैं, तो हम हर से वर्गमूल और घनमूल जैसे मूल भावों को हटा देते हैं।
परिभाषा
परिमेयकरण एक परिमेय संख्या प्राप्त करने के लिए किसी अन्य समान योग से गुणा करने की प्रक्रिया है। गुणा करने के लिए जिस करणी(सर्ड) का उपयोग किया जाता है उसे परिमेयकरण कारक कहा जाता है।
- परिमेयकरण बनाने के लिए हमें एक और चाहिए, ।
- को परिमेयकरण बनाने के लिए हमें एक परिमेयकरण कारक की आवश्यकता है,
- के परिमेयकरण कारक को परिमेयकरण बनाने के लिए की आवश्यकता है, ।
हर का परिमेयकरण का अर्थ
हर का परिमेयकरण का अर्थ है किसी मूल को, उदाहरण के लिए, एक घनमूल या वर्गमूल को भिन्न (हर) के नीचे से भिन्न (अंश) के शीर्ष तक ले जाने की प्रक्रिया। इसके द्वारा हम भिन्न को उसके सरलतम रूप में लाते हैं जिससे हर परिमेय हो जाता है।