वास्तविक संख्याएँ और उनके दशमलव प्रसार: Difference between revisions
From Vidyalayawiki
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
{| class="wikitable" | |||
|+ | |||
| colspan="8" style="text-align: center" |<math>\frac{1}{7} </math> | |||
| colspan="7" style="text-align: center" |<math>\frac{10}{3}</math> | |||
| | |||
| colspan="5" style="text-align: center" |<math> \frac{7}{8}</math> | |||
|- | |||
| | |||
| colspan="7" style="border-bottom: solid 5px blue" |0.142857..... | |||
| rowspan="15" | | |||
| | |||
| colspan="5" style="border-bottom: solid 5px blue"|3.3333... | |||
| rowspan="15" | | |||
| | |||
| colspan="4" style="border-bottom: solid 5px blue"|0.875 | |||
|- | |||
| rowspan="13" style="border-right: solid 5px blue; vertical-align:top" |7 | |||
|1 | |||
|0 | |||
| colspan="5" rowspan="2" | | |||
| rowspan="9" style="border-right: solid 5px blue; vertical-align:top" |3 | |||
|1 | |||
|0 | |||
| colspan="3" rowspan="2" | | |||
| rowspan="7" style="border-right: solid 5px blue; vertical-align:top" |8 | |||
|7 | |||
|0 | |||
| colspan="2" rowspan="2" | | |||
|- | |||
| rowspan="12" | | |||
|7 | |||
| rowspan="8" | | |||
|9 | |||
|6 | |||
|4 | |||
|- | |||
| | |||
3 | |||
|0 | |||
| colspan="4" rowspan="2" | | |||
|1 | |||
|0 | |||
| colspan="2" rowspan="2" | | |||
| rowspan="5" | | |||
|6 | |||
|0 | |||
| rowspan="2" | | |||
|- | |||
|2 | |||
| | |||
8 | |||
| rowspan="6" | | |||
|9 | |||
|5 | |||
|6 | |||
|- | |||
| rowspan="9" | | |||
| | |||
2 | |||
|0 | |||
| colspan="3" rowspan="2" | | |||
|1 | |||
|0 | |||
| rowspan="2" | | |||
| rowspan="3" | | |||
|4 | |||
|0 | |||
|- | |||
|1 | |||
|4 | |||
| rowspan="4" | | |||
|9 | |||
|4 | |||
|0 | |||
|- | |||
| rowspan="7" | | |||
| | |||
6 | |||
|0 | |||
| colspan="2" rowspan="2" | | |||
|1 | |||
|0 | |||
| | |||
|0 | |||
|- | |||
|5 | |||
| | |||
6 | |||
| | |||
|9 | |||
| colspan="5" rowspan="7" |Reminders: 6,4,0. | |||
Divisor: 8 | |||
|- | |||
| rowspan="5" | | |||
|4 | |||
|0 | |||
| rowspan="2" | | |||
| | |||
|1 | |||
|- | |||
|3 | |||
|5 | |||
| colspan="6" rowspan="5" |Reminders: 1,1,1,1... | |||
Divisor: 3 | |||
|- | |||
| rowspan="3" | | |||
|5 | |||
|0 | |||
|- | |||
|4 | |||
|9 | |||
|- | |||
| | |||
|1 | |||
|- | |||
| colspan="8" |Reminders: 3,2,6,4,5,1,3,2,6,4,5,1... | |||
Divisor: 7 | |||
|} | |||
In the above division operation | |||
* The remainders either become <math>0</math> after some stage, or start repeating themselves. | |||
* The number of entries in the repeating string of remainders is less than the divisor (in <math>\frac{10}{3} </math> , one number repeats itself and the divisor is <math>3</math> , in <math>\frac{1}{7} </math> there are six entries <math>326451</math> in the repeating string of remainders and the divisor is <math>7</math> ) | |||
*If the remainders repeat, then we get a repeating block of digits in the quotient (for <math>\frac{10}{3} </math> , <math>3</math> repeats in the quotient and for <math>\frac{1}{7} </math> , repeating block <math>142857</math> in the quotient) | |||
The above pattern using the examples above is true for all rationals of the form <math>\frac{p}{q} </math> (<math>q \ne 0</math>). | |||
On division of <math>p </math> by <math>q </math>, two main things happen – either the remainder becomes zero or never becomes zero and we get a repeating string of remainders. | |||
The decimal expansion of real numbers can be classified into three types. They are: | |||
* [[Terminating decimal expansions|Terminating Decimals]] | |||
* [[Non-terminating recurring decimal expansions|Non-terminating and Repeating Decimals]] | |||
* [[Non-terminating recurring decimal expansions|Non-terminating and Non-repeating Decimals]] | |||
[[Category:संख्या पद्धति]] | [[Category:संख्या पद्धति]] | ||
[[Category:गणित]] | [[Category:गणित]] | ||
[[Category:कक्षा-9]] | [[Category:कक्षा-9]] | ||
Revision as of 08:14, 7 May 2024
| 0.142857..... | 3.3333... | 0.875 | ||||||||||||||||||
| 7 | 1 | 0 | 3 | 1 | 0 | 8 | 7 | 0 | ||||||||||||
| 7 | 9 | 6 | 4 | |||||||||||||||||
|
3 |
0 | 1 | 0 | 6 | 0 | |||||||||||||||
| 2 |
8 |
9 | 5 | 6 | ||||||||||||||||
|
2 |
0 | 1 | 0 | 4 | 0 | |||||||||||||||
| 1 | 4 | 9 | 4 | 0 | ||||||||||||||||
|
6 |
0 | 1 | 0 | 0 | ||||||||||||||||
| 5 |
6 |
9 | Reminders: 6,4,0.
Divisor: 8 | |||||||||||||||||
| 4 | 0 | 1 | ||||||||||||||||||
| 3 | 5 | Reminders: 1,1,1,1...
Divisor: 3 | ||||||||||||||||||
| 5 | 0 | |||||||||||||||||||
| 4 | 9 | |||||||||||||||||||
| 1 | ||||||||||||||||||||
| Reminders: 3,2,6,4,5,1,3,2,6,4,5,1...
Divisor: 7 | ||||||||||||||||||||
In the above division operation
- The remainders either become after some stage, or start repeating themselves.
- The number of entries in the repeating string of remainders is less than the divisor (in , one number repeats itself and the divisor is , in there are six entries in the repeating string of remainders and the divisor is )
- If the remainders repeat, then we get a repeating block of digits in the quotient (for , repeats in the quotient and for , repeating block in the quotient)
The above pattern using the examples above is true for all rationals of the form ().
On division of by , two main things happen – either the remainder becomes zero or never becomes zero and we get a repeating string of remainders.
The decimal expansion of real numbers can be classified into three types. They are: