वास्तविक संख्याएँ और उनके दशमलव प्रसार: Difference between revisions

From Vidyalayawiki

No edit summary
No edit summary
Line 1: Line 1:
{| class="wikitable"
|+
| colspan="8" style="text-align: center" |<math>\frac{1}{7} </math>
| colspan="7" style="text-align: center" |<math>\frac{10}{3}</math>
|
| colspan="5" style="text-align: center" |<math> \frac{7}{8}</math>
|-
|
| colspan="7" style="border-bottom: solid 5px blue" |0.142857.....
| rowspan="15" |
|
| colspan="5" style="border-bottom: solid 5px blue"|3.3333...
| rowspan="15" |
|
| colspan="4" style="border-bottom: solid 5px blue"|0.875
|-
| rowspan="13" style="border-right: solid 5px blue; vertical-align:top" |7
|1
|0
| colspan="5" rowspan="2" |
| rowspan="9" style="border-right: solid 5px blue; vertical-align:top" |3
|1
|0
| colspan="3" rowspan="2"  |
| rowspan="7" style="border-right: solid 5px blue; vertical-align:top" |8
|7
|0
| colspan="2" rowspan="2" |
|-
| rowspan="12" |
|7
| rowspan="8" |
|9
|6
|4
|-
|
3
|0
| colspan="4" rowspan="2" |
|1
|0
| colspan="2" rowspan="2" |
| rowspan="5" |
|6
|0
| rowspan="2" |
|-
|2
|
8
| rowspan="6" |
|9
|5
|6
|-
| rowspan="9" |
|
2
|0
| colspan="3" rowspan="2" |
|1
|0
| rowspan="2" |
| rowspan="3" |
|4
|0
|-
|1
|4
| rowspan="4" |
|9
|4
|0
|-
| rowspan="7" |
|
6
|0
| colspan="2" rowspan="2" |
|1
|0
|
|0
|-
|5
|
6
|
|9
| colspan="5" rowspan="7" |Reminders: 6,4,0.
Divisor: 8
|-
| rowspan="5" |
|4
|0
| rowspan="2" |
|
|1
|-
|3
|5
| colspan="6" rowspan="5" |Reminders: 1,1,1,1...
Divisor: 3
|-
| rowspan="3" |
|5
|0
|-
|4
|9
|-
|
|1
|-
| colspan="8" |Reminders: 3,2,6,4,5,1,3,2,6,4,5,1...
Divisor: 7
|}
In the above division operation
* The remainders either become <math>0</math> after some stage, or start repeating themselves.
* The number of entries in the repeating string of remainders is less than the divisor (in <math>\frac{10}{3} </math> , one number repeats itself and the divisor is <math>3</math> , in <math>\frac{1}{7} </math> there are six entries <math>326451</math> in the repeating string of remainders and the divisor is <math>7</math> )
*If the remainders repeat, then we get a repeating block of digits in the quotient (for <math>\frac{10}{3} </math> , <math>3</math> repeats in the quotient and for <math>\frac{1}{7} </math> , repeating block <math>142857</math>  in the quotient)
The above pattern using the examples above is true for all rationals of the form <math>\frac{p}{q} </math> (<math>q \ne 0</math>).
On division of <math>p </math> by <math>q </math>, two main things happen – either the remainder becomes zero or never becomes zero and we get a repeating string of remainders.
The decimal expansion of real numbers can be classified into three types. They are:
* [[Terminating decimal expansions|Terminating Decimals]]
* [[Non-terminating recurring decimal expansions|Non-terminating and Repeating Decimals]]
* [[Non-terminating recurring decimal expansions|Non-terminating and Non-repeating Decimals]]


[[Category:संख्या पद्धति]]
[[Category:संख्या पद्धति]]
[[Category:गणित]]
[[Category:गणित]]
[[Category:कक्षा-9]]
[[Category:कक्षा-9]]
Real Numbers and their Decimal Expansions

Revision as of 08:14, 7 May 2024

0.142857..... 3.3333... 0.875
7 1 0 3 1 0 8 7 0
7 9 6 4

3

0 1 0 6 0
2

8

9 5 6

2

0 1 0 4 0
1 4 9 4 0

6

0 1 0 0
5

6

9 Reminders: 6,4,0.

Divisor: 8

4 0 1
3 5 Reminders: 1,1,1,1...

Divisor: 3

5 0
4 9
1
Reminders: 3,2,6,4,5,1,3,2,6,4,5,1...

Divisor: 7

In the above division operation

  • The remainders either become after some stage, or start repeating themselves.
  • The number of entries in the repeating string of remainders is less than the divisor (in , one number repeats itself and the divisor is , in there are six entries in the repeating string of remainders and the divisor is )
  • If the remainders repeat, then we get a repeating block of digits in the quotient (for , repeats in the quotient and for , repeating block in the quotient)

The above pattern using the examples above is true for all rationals of the form ().

On division of by , two main things happen – either the remainder becomes zero or never becomes zero and we get a repeating string of remainders.

The decimal expansion of real numbers can be classified into three types. They are: