वास्तविक संख्याएँ और उनके दशमलव प्रसार: Difference between revisions

From Vidyalayawiki

(content added)
(content added)
Line 120: Line 120:
भाजक: 7
भाजक: 7
|}
|}
In the above division operation
उपरोक्त विभाजन संक्रिया में


* The remainders either become <math>0</math> after some stage, or start repeating themselves.
* कुछ प्रक्रिया के बाद शेषफल या तो <math>0 </math> हो जाता है या स्वयं को दोहराना प्रारंभ कर देता है।
* The number of entries in the repeating string of remainders is less than the divisor (in <math>\frac{10}{3} </math> , one number repeats itself and the divisor is <math>3</math> , in <math>\frac{1}{7} </math> there are six entries <math>326451</math> in the repeating string of remainders and the divisor is <math>7</math> )
* शेषफलों की दोहराई जाने वाली श्रृंखला में प्रविष्टियों की संख्या भाजक से कम है (<math>\frac{10}{3} </math> में, एक संख्या स्वयं को दोहराती है और भाजक <math>3</math> है), <math>\frac{1}{7} </math> में शेषफलों की दोहराई जाने वाली श्रृंखला में छह प्रविष्टियाँ <math>326451</math> हैं और भाजक <math>7</math> है)
*If the remainders repeat, then we get a repeating block of digits in the quotient (for <math>\frac{10}{3} </math> , <math>3</math> repeats in the quotient and for <math>\frac{1}{7} </math> , repeating block <math>142857</math>  in the quotient)
*If the remainders repeat, then we get a repeating block of digits in the quotient (for <math>\frac{10}{3} </math> , <math>3</math> repeats in the quotient and for <math>\frac{1}{7} </math> , repeating block <math>142857</math>  in the quotient)
The above pattern using the examples above is true for all rationals of the form <math>\frac{p}{q} </math> (<math>q \ne 0</math>).  
The above pattern using the examples above is true for all rationals of the form <math>\frac{p}{q} </math> (<math>q \ne 0</math>).  
Line 131: Line 131:
The decimal expansion of real numbers can be classified into three types. They are:
The decimal expansion of real numbers can be classified into three types. They are:


* [[Terminating decimal expansions|Terminating Decimals]]
* [[दशमलव प्रसार को सांत करना|दशमलव को सांत करना]]
* [[Non-terminating recurring decimal expansions|Non-terminating and Repeating Decimals]]
* [[अनवसानी(असांत) आवर्ती दशमलव प्रसार|अनवसानी(असांत) और पुनरावर्ती दशमलव]]
* [[Non-terminating recurring decimal expansions|Non-terminating and Non-repeating Decimals]]
* [[अनवसानी(असांत) आवर्ती दशमलव प्रसार|अनवसानी(असांत) और अपुनरावर्ती दशमलव]]


[[Category:संख्या पद्धति]]
[[Category:संख्या पद्धति]]
[[Category:गणित]]
[[Category:गणित]]
[[Category:कक्षा-9]]
[[Category:कक्षा-9]]

Revision as of 08:44, 7 May 2024

वास्तविक संख्या के लिए दशमलव प्रसार नीचे समझाया गया है।

0.142857..... 3.3333... 0.875
7 1 0 3 1 0 8 7 0
7 9 6 4

3

0 1 0 6 0
2

8

9 5 6

2

0 1 0 4 0
1 4 9 4 0

6

0 1 0 0
5

6

9 शेष: 6,4,0.

भाजक: 8

4 0 1
3 5 शेष: 1,1,1,1...

भाजक: 3

5 0
4 9
1
शेष: 3,2,6,4,5,1,3,2,6,4,5,1...

भाजक: 7

उपरोक्त विभाजन संक्रिया में

  • कुछ प्रक्रिया के बाद शेषफल या तो हो जाता है या स्वयं को दोहराना प्रारंभ कर देता है।
  • शेषफलों की दोहराई जाने वाली श्रृंखला में प्रविष्टियों की संख्या भाजक से कम है ( में, एक संख्या स्वयं को दोहराती है और भाजक है), में शेषफलों की दोहराई जाने वाली श्रृंखला में छह प्रविष्टियाँ हैं और भाजक है)
  • If the remainders repeat, then we get a repeating block of digits in the quotient (for , repeats in the quotient and for , repeating block in the quotient)

The above pattern using the examples above is true for all rationals of the form ().

On division of by , two main things happen – either the remainder becomes zero or never becomes zero and we get a repeating string of remainders.

The decimal expansion of real numbers can be classified into three types. They are: