धन पूर्णांकों के लिए द्विपद प्रमेय: Difference between revisions
From Vidyalayawiki
Ramamurthy (talk | contribs) (Category updated) |
(added content) |
||
| Line 1: | Line 1: | ||
धनात्मक समाकलन पूर्णांकों के लिए द्विपद प्रमेय बताता है कि किसी विस्तार में पदों की कुल संख्या प्रायः विस्तार के पूर्णांक से एक अधिक होती है। | |||
उदाहरण के लिए, <math>(a+b)^n</math> के विस्तार में, पदों की संख्या <math>n+1</math> है, जहाँ <math>n </math> कोई भी धनात्मक पूर्णांक है। | |||
द्विपद प्रमेय यह भी बताता है कि <math>(a+b)^n</math> के रूप के पद को <math>r^s b^t</math> के रूप में कैसे विस्तारित और व्यक्त किया जाए, जहां घातांक <math>s</math> और <math>t</math> गैर-ऋणात्मक पूर्णांक हैं जो शर्त <math>s+t=n</math> को संतुष्ट करते हैं। | |||
द्विपद प्रमेय का उपयोग <math>(x+y)^n</math> को विस्तारित करने के लिए किया जा सकता है, जहाँ <math>n </math> कोई भी परिमेय संख्या है। | |||
[[Category:द्विपद प्रमेय]][[Category:कक्षा-11]][[Category:गणित]] | [[Category:द्विपद प्रमेय]][[Category:कक्षा-11]][[Category:गणित]] | ||
Revision as of 17:45, 16 November 2024
धनात्मक समाकलन पूर्णांकों के लिए द्विपद प्रमेय बताता है कि किसी विस्तार में पदों की कुल संख्या प्रायः विस्तार के पूर्णांक से एक अधिक होती है।
उदाहरण के लिए, के विस्तार में, पदों की संख्या है, जहाँ कोई भी धनात्मक पूर्णांक है।
द्विपद प्रमेय यह भी बताता है कि के रूप के पद को के रूप में कैसे विस्तारित और व्यक्त किया जाए, जहां घातांक और गैर-ऋणात्मक पूर्णांक हैं जो शर्त को संतुष्ट करते हैं।
द्विपद प्रमेय का उपयोग को विस्तारित करने के लिए किया जा सकता है, जहाँ कोई भी परिमेय संख्या है।