सतत बारंबारता बंटन

From Vidyalayawiki

Revision as of 21:41, 26 November 2024 by Mani (talk | contribs) (added content)

आवृत्ति वितरण एक मात्रात्मक चर के कच्चे डेटा को व्यवस्थित करने का एक व्यापक तरीका है। आवृत्ति वितरण तालिकाएँ दो प्रकार की होती हैं। वे असतत आवृत्ति वितरण और सतत आवृत्ति वितरण हैं।

सांख्यिकी में, आवृत्ति वितरण उन मानों की एक सतत व्यवस्था है जो एक या अधिक चर एक नमूने में लेते हैं। जब आप तालिका में कुछ प्रविष्टि लिखते हैं तो इसमें एक विशेष अंतराल के भीतर आवृत्ति होती है। केंद्रीय प्रवृत्ति के माप का उपयोग डेटा को सारांशित करने के लिए किया जाता है। यह दिए गए डेटा के सेट का वर्णन करने के लिए सबसे अधिक प्रतिनिधि मान निर्दिष्ट करता है। अंकगणित माध्य औसत की गणना करने की सबसे आम विधि है। यह दिए गए डेटा के अवलोकन पर आधारित है और इसकी गणना करना बहुत आसान है। माध्यिका ऐसे डेटा का बेहतर सारांश है। गुणात्मक डेटा खोजने के लिए बहुलक का उपयोग किया जाता है।

केंद्रीय प्रवृत्ति का माप

औसत की गणना करने के लिए तीन सबसे महत्वपूर्ण विधियाँ हैं। वे हैं माध्य, माध्यिका और बहुलक।

अंकगणितीय माध्य को सभी प्रेक्षणों के मानों के योग को प्रेक्षणों की संख्या से विभाजित करके परिभाषित किया जाता है। माध्यिका वह मध्य मान है जब दिए गए डेटा सेट को आरोही क्रम में व्यवस्थित किया जाता है। बहुलक सबसे उपयुक्त माप है। यह वह मान है जो अधिकतम बार आता है। अब, हम सतत आवृत्ति वितरण की गणना पर विचार करेंगे।

सतत आवृत्ति वितरण की गणना

सतत आवृत्ति वितरण की गणना करने के लिए हमारे पास चार चरण हैं-

समान या असमान आकार के वर्ग अंतराल होने चाहिए।

असमान वर्ग अंतराल आकारों की दो स्थितियाँ हैं। वे हैं: जब हमारे पास आय और अन्य संबंधित चर पर डेटा होता है जहाँ सीमा बहुत अधिक होती है। यदि सीमा के एक छोटे से हिस्से में कई मान मौजूद हैं, तो समान आकार वाले वर्ग अंतराल का उपयोग करने से विभिन्न मानों पर जानकारी का नुकसान होगा। हमारे द्वारा चर्चा किए गए मामले को छोड़कर, हम आवृत्ति वितरण में समान आकार के वर्ग अंतराल को परिभाषित कर सकते हैं।

हमारे पास कितने वर्ग होने चाहिए।

यह अवलोकनों की कुल संख्या पर निर्भर करता है। इसलिए, कक्षाओं की संख्या 6 से 15 के बीच हो सकती है। इसलिए, यदि हम समान आकार के वर्ग अंतराल का उपयोग कर रहे हैं, तो हम वर्ग अंतराल के आकार से श्रेणी को विभाजित करके कक्षाओं की संख्या की गणना कर सकते हैं।

प्रत्येक वर्ग का आकार क्या होना चाहिए।

जब हम चर की श्रेणी पर आधारित वर्ग अंतराल जानते हैं, तो हम कक्षाओं की संख्या ज्ञात कर सकते हैं। इस प्रकार, हम देख सकते हैं कि ये दोनों आपस में जुड़े हुए हैं। इसलिए, हमें उनके बारे में एक साथ निर्णय लेना होगा।

हमें वर्ग सीमाएँ कैसे निर्धारित करनी चाहिए

वर्ग सीमाएँ निश्चित और स्पष्ट रूप से बताई जानी चाहिए। उदाहरण के लिए, हमारे पास दो प्रकार के वर्ग अंतराल हैं, जैसे कि अनन्य वर्ग अंतराल: इस प्रकार के वर्ग अंतराल में, ऊपरी या निचली वर्ग सीमा के बराबर एक अवलोकन को वर्ग की आवृत्ति से बाहर रखा जाता है। समावेशी वर्ग अंतराल: यहाँ, एक वर्ग की निचली और ऊपरी सीमाओं के बराबर मान उसी वर्ग की आवृत्ति में शामिल किए जाते हैं।

सतत आवृत्ति वितरण सारणी उदाहरण-

प्रश्न- दी गई सारणी पर विचार करें। बहुलक का मान ज्ञात करें।

data Cumulative Frequency
Less than 50 97
less than 45 95
Less than 40 90
Less than 35 80
Less than 30 60
Less than 25 30
Less than 20 12
Less than 15 4

उत्तर- हम जानते हैं कि यह संचयी आवृत्ति वितरण का मामला है। बहुलक की गणना करने के लिए, पहले अपवर्जी श्रृंखला में परिवर्तित करें। यहाँ, श्रृंखला अवरोही क्रम में है। तालिका को सामान्य आवृत्ति तालिका में परिवर्तित करना होगा।

data group Frequency
45-50 97-95=2
40-45 95-90=5
35-40 90-80=10
30-35 80-60=20
25-30 60-30= 30
20-25 30-12=18
15-20 12-4=8
10-15 4

बहुलक का मान 25-30 वर्ग अंतराल में होता है।

यहाँ, बहुलक वर्ग की निचली सीमा (L) = 25

मोडल वर्ग की आवृत्ति और बहुलक वर्ग से पहले वाले वर्ग की आवृत्ति के बीच का अंतर (D1) = 30-18=12

मोडल वर्ग की आवृत्ति और बहुलक वर्ग के बाद वाले वर्ग की आवृत्ति के बीच का अंतर (D2) = 30-20=10

वर्ग अंतराल (h) = 5

मोडल का मान = L + D1D1+D2h= 25+ 1212+105

= 27.27

अतः बहुलक 27.27 है

वर्ग आवृत्ति

वर्ग आवृत्ति को दिए गए वर्ग अंतराल में डेटा को श्रृंखला में दोहराए जाने की संख्या के रूप में परिभाषित किया जाता है। आवृत्ति वितरण तालिका बनाने के लिए, आपको टैली चिह्नों का उपयोग करके तालिका बनानी होगी। यह आवृत्ति वितरण तालिका की गणना करने का सबसे आसान तरीका है।

निष्कर्ष

लेख में असतत और सतत चर को परिभाषित किया गया था। हमने आवृत्ति वितरण पर भी चर्चा की है। हमने अवधारणा को बेहतर ढंग से समझने के लिए हल किए गए उदाहरण के साथ आवृत्ति वितरण तालिका को गहराई से समझाया है। हमने वर्ग आवृत्ति, माध्य विचलन के साथ-साथ मानक विचलन के बारे में बात की है। हम पहले से ही जानते हैं कि केंद्रीय प्रवृत्ति का माप एकल मान के साथ डेटा को सारांशित करता है जो पूरे डेटा का प्रतिनिधित्व करता है। अंकगणितीय माध्य से वस्तुओं के विचलन का योग शून्य के बराबर है। विभिन्न वस्तुओं को उनके महत्व के अनुसार भार देना महत्वपूर्ण है।