यूक्लिड विभाजन प्रमेयिका

From Vidyalayawiki

Revision as of 13:23, 10 October 2023 by Shikha (talk | contribs) (added Category:Vidyalaya Completed using HotCat)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

यूक्लिड विभाजन प्रमेयिका, प्राचीन यूनानी गणितज्ञ यूक्लिड द्वारा प्रस्तावित मौलिक प्रमेयों में से एक है। यूक्लिड विभाजन प्रमेयिका की मदद से एक एल्गोरिथ्म परिभाषित किया गया है । प्रमेयिका एक प्रमेय की तरह है , जो एक सिद्ध कथन है जिसका प्रयोग अन्य गणितीय कथनो को सत्यापित करने के लिए किया जाता है । आइए इस इकाई में हम यूक्लिड विभाजन प्रमेयिका तथा उनके अनुप्रयोगो को जानते हैं ।

यूक्लिड विभाजन प्रमेयिका

यूक्लिड विभाजन प्रमेयिका का कथन[1]

यूक्लिड का विभाजन प्रमेयिका विभाजन के विभिन्न घटकों के बीच संबंध बताता है। यह बताता है कि, किन्हीं दो धनात्मक पूर्णांकों और के लिए दो अद्वितीय पूर्णांक और होते हैं, जिन्हें हम के रूप में प्रदर्शित कर सकते हैं ।

इस विधि में, हम को भाग का भागफल कहते हैं, और को भाग का शेषफल है।

हम विभाजन एल्गोरिथ्म को जानते हैं; लाभांश भाजक भागफल शेषफल । यह और कुछ नहीं वरन् यूक्लिड विभाजन प्रमेयिका का अन्य नाम है ।

उदाहरण

आइए, बेहतर समझ के लिए यूक्लिड विभाजन प्रमेयिका के एक उदाहरण पर विचार करें।

यहां, दी गई संख्याएं हैं, और हम इसे रूप में लिख सकते हैं ।

जहां, भागफल है और शेषफल है ।

यूक्लिड विभाजन प्रमेयिका के अनुप्रयोग

यूक्लिड विभाजन प्रमेयिका के अनुप्रयोग[2] निम्नलिखित है :

  1. यूक्लिड विभाजन प्रमेयिका का प्रयोग पूर्णांकों के विभाजन के लिए उपयोग किया जाता है ।
  2. यूक्लिड के विभाजन एल्गोरिथ्म में एक प्रमुख अवधारणा के रूप में उपयोग किया जाता है जिससे हम धनात्मक संख्याओं का महत्तम समापवर्तक या म. स. ज्ञात करते हैं ।
  3. धनात्मक संख्याओं का महत्तम समापवर्तक या म. स. ज्ञात करने के लिए उपयोग किया जाता है ।
  4. विषम संख्या, सम संख्या, घन संख्या, वर्ग संख्या आदि के गुणों को जानने के लिए उपयोग किया जाता है ।

उदाहरण

1. यूक्लिड विभाजन प्रमेयिका का प्रयोग करके सिद्ध कीजिए कि किसी धनात्मक पूर्णांक का वर्ग किसी पूर्णांक के लिए या के रूप का होता है।[3]

हल

यूक्लिड विभाजन प्रमेयिका का प्रयोग करके , आइए सबसे छोटी वर्ग संख्या अर्थात से शुरुआत करें ,

[ रूप में ]

आइए अगली वर्ग संख्या , अर्थात 9 लेते है ,

[ रूप में ]

आइए अगली वर्ग संख्या , अर्थात 16 लेते है ,

[ रूप में ]

उपर्युक्त दिए गए समीकरण एवं से यह स्पष्ट है कि किसी धनात्मक पूर्णांक का वर्ग किसी पूर्णांक के लिए या के रूप का होता है ।

अभ्यास प्रश्न

  1. यूक्लिड विभाजन प्रमेयिका का उपयोग करके सिद्ध कीजिए कि किसी धनात्मक पूर्णांक का घन , या के रूप का होता है ।

संदर्भ

  1. "यूक्लिड विभाजन प्रमेयिका का कथन".
  2. "यूक्लिड विभाजन प्रमेयिका के अनुप्रयोग".
  3. "उदाहरण".