=4+i3×4−i34−i3{\displaystyle =4+i{\sqrt {3}}\times {\frac {4-i{\sqrt {3}}}{4-i{\sqrt {3}}}}}
=42−(i3)24−i3{\displaystyle ={\frac {4^{2}-(i{\sqrt {3}})^{2}}{4-i{\sqrt {3}}}}}
=16−i234−i3{\displaystyle ={\frac {16-i^{2}3}{4-i{\sqrt {3}}}}}
i2=−1{\displaystyle i^{2}=-1}
=16−(−1)34−i3{\displaystyle ={\frac {16-(-1)3}{4-i{\sqrt {3}}}}}
=16+34−i3{\displaystyle ={\frac {16+3}{4-i{\sqrt {3}}}}}
=194−i3{\displaystyle ={\frac {19}{4-i{\sqrt {3}}}}}