आव्यूह के सहखंडज और व्युत्क्रम

From Vidyalayawiki

Revision as of 13:07, 8 February 2024 by Mani (talk | contribs) (added content)

किसी आव्यूह के व्युत्क्रम की गणना करने के लिए आव्यूह के सहखंडज की आवश्यकता होती है।

आव्यूह का सहखंडज

आव्यूह का सहखंडज, के सहखंड आव्यूह का परिवर्त है। वर्ग आव्यूह का सहखंडज (adj.) द्वारा निरूपित किया जाता है। मान लीजिए , कोटि का एक वर्ग आव्यूह है।

किसी आव्यूह का सहखंडज ज्ञात करने में सम्मिलित प्रक्रिया इस प्रकार हैं:

  • आव्यूह के सभी अवयवों का उपसारणिक आव्यूह को ज्ञात करें ।
  • आव्यूह के सभी उपसारणिक अवयवों का सहखंड आव्यूह को ज्ञात करें ।
  • सहखंड आव्यूह का परिवर्त लेते हुए सहखंडज (adj.) को ज्ञात करें ।

आव्यूह का सहखंडज

प्रक्रिया 1: आव्यूह के सभी अवयवों का उपसारणिक आव्यूह को ज्ञात करें ।

पंक्ति 1:

का उपसारणिक

का उपसारणिक

का उपसारणिक

पंक्ति 2:

का उपसारणिक

का उपसारणिक

का उपसारणिक

पंक्ति 3:

का उपसारणिक

का उपसारणिक

का उपसारणिक

आव्यूह का उपसारणिक



प्रक्रिया 2: आव्यूह के सभी उपसारणिक अवयवों का सहखंड आव्यूह को ज्ञात करें ।

आव्यूह के सहखंडों को ज्ञात करने के लिए, संबंधित उपसारणिक को उनकी स्थिति के अनुसार नीचे दिए गए चिह्नों से गुणा किया जाना चाहिए।

आव्यूह का उपसारणिक

आव्यूह का सहखंड


प्रक्रिया 3: सहखंड आव्यूह का परिवर्त लेते हुए सहखंडज (adj.) को ज्ञात करें ।

आव्यूह का एडजॉइंट adj =सहखंड आव्यूह का परिवर्त

आव्यूह का व्युत्क्रम

The inverse of a matrix , which is represented as , is found using the adjoint of a matrix.

A-1 = (1/|A|) × adj(A). Here,

Here

  • = the determinant of
  • = adjoint of

Inverse of a Matrix

determinant of

Adjoint of Matrix

Inverse of matrix