माध्य - कल्पित माध्य विधि

From Vidyalayawiki

Revision as of 08:56, 15 March 2024 by Mani (talk | contribs) (added content)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

सांख्यिकी में,वर्गीकृत आंकड़ों के माध्य की गणना के लिए कल्पित माध्य विधि का उपयोग किया जाता है। यदि दिया गया आंकड़ा बड़ा है, तो माध्य की गणना के लिए प्रत्यक्ष विधि के स्थान पर इस विधि की अनुशंसा की जाती है। यह विधि गणना को कम करने में मदद करती है और परिणाम छोटे संख्यात्मक मानों में आते हैं। यह विधि माध्य का अनुमान लगाने और गणना करने के लिए आसान मान को पूर्णांकित करने पर निर्भर करती है। पुनः यह मान सभी नमूना मानों से घटा दिया जाता है। जब नमूनों को समान आकार श्रेणियों या वर्ग अंतरालों में परिवर्तित किया जाता है, तो एक केंद्रीय वर्ग चुना जाता है और गणना की जाती है।

कल्पित माध्य विधि सूत्र

मान लीजिए वर्ग अंतराल के मध्य-बिंदु या वर्ग चिह्न हैं और संबंधित आवृत्तियाँ हैं। कल्पित माध्य विधि का सूत्र है ।

यहाँ,

= कल्पित माध्य

= वीं वर्ग की आवृत्ति

= = वीं वर्ग का विचलन

=प्रेक्षणों की कुल संख्या

= वर्ग चिन्ह = (ऊपरी वर्ग सीमा + निचली वर्ग सीमा) / 2

उदाहरण: निम्नलिखित तालिका एक परीक्षा में 110 छात्रों द्वारा प्राप्त अंकों के बारे में जानकारी देती है।

वर्ग अंतराल आवृत्ति
0 - 10 12
10 - 20 28
20 - 30 32
30 - 40 25
40 - 50 13

कल्पित माध्य विधि का उपयोग करके विद्यार्थियों के माध्य अंक ज्ञात कीजिए।

हल:

वर्ग अंतराल आवृत्ति () वर्ग चिन्ह ()
0 - 10 12 5 5 - 25 = -20 -240
10 - 20 28 15 15 - 25 = -10 -280
20 - 30 32 25 = 25 - 25 = 0 0
30 - 40 25 35 35 - 25 = 10 250
40 - 50 13 45 45 - 25 = 20 260
कुल

कल्पित माध्य= = 25

विद्यार्थियों के माध्य अंक हैं