सारणिकों और आव्यूहों के अनुप्रयोग

From Vidyalayawiki

Revision as of 21:52, 29 November 2024 by Mani (talk | contribs) (added internal links)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

आव्यूह और सारणिक तत्वों की एक सरणी से जुड़े विभिन्न अंकगणितीय संचालन करने के लिए उपयोग किए जाते हैं। आव्यूह तत्वों की एक आयताकार सरणी है जिसे पंक्तियों और स्तंभों के रूप में दर्शाया जाता है। और सारणिकों की गणना एक आव्यूह के लिए की जाती है और यह एक एकल संख्यात्मक मान है जिसे तत्वों की इस सरणी से गणना की गई है। आव्यूह को बड़े अक्षरों में एक वर्णमाला के साथ दर्शाया जाता है और इसे के रूप में लिखा जाता है, और सारणिकको के रूप में दर्शाया जाता है।

आव्यूह और सारणिकों के गुणों में अंतर होता है। एक स्थिरांक का आव्यूह के साथ गुणन आव्यूह के प्रत्येक तत्व को गुणा करता है, और एक स्थिरांक का सारणिक के साथ गुणन किसी विशेष पंक्ति या स्तंभ के तत्वों के साथ गुणा करता है। आइए उदाहरणों, प्रायः पूछे जाने वाले प्रश्नों की सहायता से आव्यूह और सारणिकों के गुणों और उनके बीच अंतर के बारे में अधिक जानें।

आव्यूह और सारणिक का परिचय

आव्यूह और सारणिक तत्वों की एक सरणी का प्रतिनिधित्व करते हैं, और हम पूरे सारणिक के लिए एक एकल तत्व मान की गणना करते हैं। आव्यूहें,आव्यूह का बहुवचन रूप है, जो एक आयताकार सरणी या एक तालिका है जहाँ संख्याएँ या तत्व कई पंक्तियों और स्तंभों में व्यवस्थित होते हैं। आव्यूह को जोड़ा या घटाया जा सकता है यदि उनमें पंक्तियों और स्तंभों की संख्या समान हो जबकि उन्हें गुणा किया जा सकता है यदि मात्र पहले स्तंभ और दूसरे स्तंभ की पंक्तियाँ बिल्कुल समान हों।

आव्यूह और सारणिकों का गणित में घनिष्ठ संबंध है। आव्यूह तत्वों की एक सरणी है जिसे द्वारा दर्शाया जाता है, और सारणिक इस आव्यूह का प्रतिनिधित्व करने वाला एकल संख्यात्मक मान है और इसे के रूप में दर्शाया जाता है। आइए आव्यूह और सारणिक की परिभाषा देखें।

आव्यूह की परिभाषा

आव्यूह तत्वों की एक सरणी है जिसे पंक्तियों और स्तंभों के रूप में दर्शाया जाता है। सारणिकों को आव्यूह के अदिश कारक माना जाता है। आव्यूह को साधारणतः बड़े अक्षर से दर्शाया जाता है। आव्यूह का कोटी आव्यूह में पंक्तियों और स्तंभों की संख्या द्वारा दर्शाया जाता है। कोटी के आव्यूह में पंक्तियाँ और स्तंभ होते हैं।

सारणिक की परिभाषा

प्रत्येक वर्ग आव्यूह के लिए, कोटी के लिए, सारणिक को एक स्केलर मान के रूप में परिभाषित किया जा सकता है जो वास्तविक या एक जटिल संख्या है, जहाँ आव्यूह का वाँ तत्व है। सारणिक को या के रूप में दर्शाया जा सकता है, यहाँ सारणिक को संख्याओं के ग्रिड को लेकर और उन्हें वर्ग कोष्ठक का उपयोग करने के बजाय निरपेक्ष-मान बार के अंदर व्यवस्थित करके लिखा जाता है।

आव्यूह पर विचार करें

तब, इसका सारणिक इस प्रकार दर्शाया जा सकता है:

आव्यूहों और सारणिकों के बीच अंतर

आव्यूहों और सारणिकों के बीच अंतर, आव्यूहों और सारणिकों को बेहतर ढंग से समझने में सहायता करता है।

  • आव्यूह संख्याओं की एक सरणी है, लेकिन सारणिक एक एकल संख्यात्मक मान है जो आव्यूह से गणना के बाद पाया जाता है।
  • आव्यूह के सारणिक मान की गणना की जा सकती है, लेकिन आव्यूह की गणना सारणिक से नहीं की जा सकती।
  • आव्यूह किसी भी कोटी के हो सकते हैं। लेकिन एक सारणिक मात्र एक वर्ग आव्यूह के लिए पाया जा सकता है जिसमें पंक्तियों और स्तंभों की समान संख्या हो।
  • एक स्थिरांक को आव्यूह से गुणा करने पर यह आव्यूह के प्रत्येक तत्व से गुणा हो जाता है। लेकिन एक स्थिरांक को सारणिक से गुणा करने पर यह सारणिक की किसी विशेष पंक्ति या स्तंभ के प्रत्येक तत्व से गुणा हो जाता है।
  • एक सारणिक की पंक्तियों और स्तंभों को आपस में बदला जा सकता है लेकिन एक आव्यूह की कई पंक्तियों और स्तंभों को आपस में नहीं बदला जा सकता।
  • यदि कोई दो पंक्तियाँ या स्तंभ समान हैं, तो सारणिक का मान शून्य के बराबर होता है, लेकिन आव्यूह में समान पंक्तियाँ या स्तंभ इसे शून्य आव्यूह नहीं बनाते हैं। किसी विशेष पंक्ति या स्तंभ के तत्वों को मानों के योग या अंतर के रूप में विच्छेदित किया जा सकता है और इसे दो अलग-अलग निर्धारकों के रूप में लिखा जा सकता है। लेकिन किसी भी पंक्ति या स्तंभ के आव्यूह तत्वों को किसी भी दो पंक्तियों के योग या अंतर में नहीं तोड़ा जा सकता है।
  • किसी पंक्ति या स्तंभ को यदि किसी अन्य पंक्ति या स्तंभ के समान गुणकों के साथ जोड़ा जाए, तो सारणिक का मान नहीं बदलता है। लेकिन एक समान संचालन आव्यूह पर नहीं किया जा सकता है।

आव्यूह और सारणिकों के अनुप्रयोग

वैज्ञानिक क्षेत्र में आव्यूह और सारणिकों के कई अनुप्रयोग हैं और ये व्यावहारिक वास्तविक जीवन की समस्या पर लागू होते हैं। इनका उपयोग मुख्य रूप से विज्ञान और इंजीनियरिंग के क्षेत्र में किया जाता है।

  1. आव्यूह और सारणिकों के अनुप्रयोग इस प्रकार हैं:
  2. रैखिक समीकरणों की प्रणाली को हल करना
  3. एक प्रणाली की संगति
  4. रैखिक समीकरणों को हल करना
  5. एक रेखा का सामान्य समीकरण
  6. समांतर चतुर्भुज का क्षेत्रफल
  7. त्रिभुज का क्षेत्रफल
  8. एक समांतर चतुर्भुज का आयतन

आव्यूह और सारणिकों पर उदाहरण

उदाहरण 1: दो आव्यूहों का गुणन ज्ञात करें, और परिणामी आव्यूह का सारणिक ज्ञात करें।

और

समाधान:

दिए गए आव्यूह कोटी के हैं। ∵ वे आव्यूह गुणन के लिए संगत हैं, हम आव्यूह का गुणन ज्ञात कर सकते हैं और उनका गुणनफल आव्यूह भी कोटी का होगा।

आव्यूहों और का गुणनफल है


सारणिक मान है

उत्तर: इसलिए दोनों आव्यूहों का गुणनफल है और उनका सारणिक मान है।


उदाहरण 2: आव्यूह का सारणिक ज्ञात कीजिए जहाँ

समाधान:

सारणिक नियम का उपयोग करते हुए,

उत्तर: दिए गए आव्यूह का सारणिक है।